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ปี พื่.ศ. 2553 ถุ้ง พื่.ศ. 2565 ด้วยอัลกอริท้มต้นไม้ตัดสินใจั  
C4.5, C5.0 และวิธี Random forest โดยพื่บว่าขึ้้อมูลที�ใช้ใน
การจัำาแนกคลาสมีจัำานวนขึ้องคลาสต่างกันมากน้อยไม่เท่ากัน  
(class imbalance) ซึ้้�งอาจัทำาให้โมเดลที�ได้สร้างขึ้้�นมีความ
สามารถุในการทำานายคลาสที�มีจัำานวนตัวอย่างมาก มากกว่า
คลาสที�มีจัำานวนตัวอย่างน้อย ๆ นำามาซึ้้�งผลลัพื่ธ์ที�ไม่เสถุียร
และไม่แม่นยำาในคลาสที�มีจัำานวนตัวอย่างน้อย โดยปัญหานี� 
เกิดขึ้้�นได้ทั�วไปโดยเฉพื่าะขึ้้อมูลทางการแพื่ทย์ เน่�องจัาก
การตรวจัจัับโรคหร่อความเสี�ยงขึ้องโรคที�มีอัตราการเกิดต่อ
ประชากรตำ�า ทำาให้คลาสขึ้องผู้ป่วยหร่อผู้ที�มีความเสี�ยงสูง 
มีจัำานวนน้อยเม่�อเปรียบเทียบกับคลาสขึ้องผู้ที�ไม่มีโรคหร่อ
มีความเสี�ยงตำ�า เพื่่�อแก้ปัญหาขึ้้อมูลไม่สมดุลในงานวิจััยนี� 
ใชเ้ทคนิคการสุม่เพื่ิ�ม (oversampling) เพื่่�อเพื่ิ�มจัำานวนตวัอยา่ง
ในคลาสที�นอ้ยเพื่่�อทำาใหจ้ัำานวนตวัอยา่งในทกุคลาสเท่ากนัหรอ่
ใกล้เคียงกัน และวิธีสุ่มลด (undersampling) ลดตัวอย่างใน
คลาสที�มีจัำานวนมากลงเพื่่�อทำาให้จัำานวนตัวอย่างในทุกคลาส
เท่ากันหร่อใกล้เคียงกัน รวมทั�งการแบ่งขึ้้อมูล (split data) 
แบบต่าง ๆ  ทำาให้ค่าการพื่ยากรณ์มีผลต่างกันเน่�องจัากความ
แตกตา่งในชุดขึ้อ้มลูที�ถุกูใชใ้นการสรา้งและทดสอบโมเดล และ
ความแตกต่างในแบบจัำาลองที�ใช้ในการวิเคราะห์ขึ้้อมูล จัาก
การแก้ปัญหาจัะเห็นว่า C4.5 และ C5.0 ให้ผลลัพื่ธ์ที�ไม่ต่าง
จัากเดิมและผลลัพื่ธ์ที�ได้ไม่ต่างกันมากนัก ส่วนวิธี Random 
forest ให้ค่า AUC ที�ดีขึ้้�นเม่�อเปรียบเทียบกับ C4.5 และ C5.0 
ซึ้้�งสูงกว่าประมาณ 15-20% รวมทั�งค่าความระล้ก (recall) ที�
เพื่ิ�มมากขึ้้�น อาจัเกิดขึ้้�นเน่�องจัากคุณสมบัติขึ้องวิธี Random 
forest ใช้วิธีการเรียนรู้แบบรวมกลุ่ม (ensemble) ขึ้องต้นไม้
ตดัสนิใจัโดยการสุม่ขึ้อ้มลูและสุม่คณุลกัษณะ (feature) ที�ใชใ้น 
การสร้างแต่ละต้นไม้ วิธีการเรียนรู้แบบรวมกลุ่มช่วยลด 
ความเสี�ยงในการเรียนรู้โมเดลจัากขึ้้อมูลที�ไม่สมดุล (class 
imbalance) และช่วยลดการเรียนรู้มากเกินไป (overfitting) 
โดยที�อลักอรทิม้ตน้ไมต้ดัสนิใจั C4.5 และ C5.0 อาจัมแีนวโนม้
ที�จัะเกิดขึ้้�นได้ อีกทั�งวิธี Random forest สร้างต้นไม้หลายต้น
และรวมผลลพัื่ธ์จัากทกุตน้ในการตดัสนิใจั (voting) ซึ้้�งชว่ยลด
ความผิดพื่ลาดและเพื่ิ�มความแม่นยำาขึ้องโมเดล ในทางตรงกัน
ขึ้้ามอัลกอริท้มต้นไม้ตัดสินใจั C4.5 และ C5.0 มีเพื่ียงต้นไม้
ต้นเดียวซึ้้�งมีความหลากหลายที�น้อยกว่า จัากผลลัพื่ธ์ที�ได้วิธี
 Random forest ร่วมกับการสุ่มขึ้้อมูลเพื่ิ�ม (oversampling) 
35% เป็นวิธีที�ดีที�สุดสำาหรับชุดขึ้้อมูลที�ทำาการศ้กษา จัากนั�น 
ผูว้จิัยั ทำาการหาจัำานวนตน้ไม้ที�เหมาะสมและความลก้ขึ้องต้นไม้
พื่ร้อมกับการทำา k-fold cross validation เพื่่�อดูค่าที�เปลี�ยนไป

ในแต่ละรอบ ผลการทดสอบแสดงให้เห็นว่าจัำานวนต้นไม้ที�ดี
ที�สุดค่อ 200 ต้น ความล้กขึ้องต้นไม้ ค่อ 14 และ k-fold ที�ดี
ที�สุดค่อ 7 (k=7) สำาหรับการแก้ปัญหาขึ้้อมูลไม่สมดุลในงาน
วิจัยันี�เป็นอีกหน้�งแงท่ี�สำาคญัที�ช่วยให้โมเดลทำานายได้แม่นยำา
และเสถุยีร ซึ้้�งเปน็ประโยชนใ์นการวเิคราะหโ์รคและการตรวจั
สอบความเสี�ยงในโดเมนทางการแพื่ทย์ ซึ้้�งเปน็งานที�ความถูุก
ต้องและน่าเช่�อถุ่อมีความสำาคัญเป็นอย่างยิ�ง การจััดการกับ
ปัญหาความไม่สมดุลขึ้้อมูลและการแบ่งขึ้้อมูลออกเป็นชุดฝุ่ึก
และชุดทดสอบเป็นปัจัจััยสำาคัญในการทำานาย การสุ่มข้ึ้อมูล
เพื่ิ�มและลดขึ้้อมูลอาจัช่วยปรับปรุงความแม่นยำาขึ้องโมเดล 
แต่อาจัมีผลให้ขึ้้อมูลเสียหายและเพื่ิ�มเวลาในการประมวลผล  
ควรพื่จิัารณาความสมดลุขึ้องขึ้อ้มลูและการแบง่ขึ้อ้มลูใหอ้ยูใ่น
เกณฑ์ที�เหมาะสมในแต่ละกรณีการวิเคราะห์ขึ้้อมูลนั�น ๆ ซึ้้�ง
เปน็สิ�งสำาคญัในการสรา้งโมเดลที�มปีระสทิธภิาพื่ในการจัำาแนก
ขึ้้อมูลทางการแพื่ทย์ ฉะนั�นการเล่อกอัลกอริท้มที�เหมาะสม 
จัะขึ้้�นอยูก่บัความตอ้งการขึ้องงานและลกัษณะขึ้องขึ้อ้มลู และ
อาจัจัะต้องพื่จิัารณาเพื่ิ�มเตมิเกี�ยวกบัความเหมาะสมขึ้องข้ึ้อมลู
และอัลกอริท้มในงานที�มีลักษณะแตกต่างกัน
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บทคดัย่อ 
ในบทความนี� เราคำานวณตวัแพื่รไ่ฟนแ์มนสำาหรบัตวัแกวง่กวดัฮารม์อนกิอยา่งงา่ยควบคูก่บัสนามไฟฟา้คงที�โดยใชว้ธิขีึ้องชวงิเงอร์ 
ซึ้้�งอิงตามผลเฉลยขึ้องสมการไฮเซึ้นเบิร์กสำาหรับตำาแหน่งและตัวดำาเนินการโมเมนตัมแบบบัญญัติ ผลเฉลยดังกล่าวจัะถุูกใช้
เพื่่�อเขึ้ียนตัวดำาเนินการแฮมิลตันตามอันดับขึ้องตัวดำาเนินการตำาแหน่ง  (O) และ  (t) การใช้อันดับตัวดำาเนินการตามเวลา 
ที�เหมาะสมควบคู่ไปกับเง่�อนไขึ้ย่อยและเง่�อนไขึ้เริ�มต้นส่งผลให้ได้ตัวแพื่ร่ดังกล่าว เราพื่บว่าตัวเผยแพื่ร่ที�ได้รับนั�นสอดคล้อง
กับตัวเผยแพื่ร่ที�ได้จัากการใช้ปริพื่ันธ์ตามวิถุีขึ้องไฟน์แมนในงานขึ้อง Poon และ Muñoz (Poon & Muñoz 1999) เราคาดหวัง
ว่าการนำาเสนอเทคนิคนี�จัะช่วยให้อาจัารย์ฟิสิกส์และนักเรียนได้รับการยอมรับในวงกว้างมากขึ้้�น

ค�าส�าคญั: ปริพื่ันธ์ตามวิถุีขึ้องไฟน์แมน, ตัวแพื่ร่, วิธีการขึ้องชวิงเงอร์, สมการไฮน์เซึ้นเบิร์ก

Abstract 
In this article, we compute the Feynman propagator for a simple harmonic oscillator coupled to a constant electric field 
using Schwinger’s method, which is based on the solution of the Heisenberg equations for the position and canonical  
momentum operators. Such solutions are then used to write the ordered Hamiltonian operator of the position  
operators  (O) and  (t). The utilization of proper operator ordering, along with subsidiary and initial conditions, 
results in the yield of such a propagator. We found that the propagator obtained is consistent with the one obtained 
using the Feynman path integral in the work of Poon and Muñoz (Poon & Muñoz 1999). We anticipate that our  
exposition of this technique will contribute to its wider recognition among physics teachers and students.

Keywords: Feynman path integral, propagator, Schwinger’s method, Heisenberg equation
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  We anticipate that this 
technique will be advantageous and widely recognized for physics students

ท่ีเหมาะสมควบคู่ไปกัับเงื่่อนไขย่อยและเงื่่อนไขเริ่่มต้นส่งผลให้ได้ตััวแพร่ดัังกล่าว เราพบว่าตััวเผยแพร่ท่่ีได้รัับนั้้นสอดคล้อง
กัับตััวเแพร่ที่่ได้จากการใช้ปริิพัันธ์ตามวิิถีของไฟน์แมนในงานของ Poon และ Muñoz (Poon & Muñoz 1999) เราคาดหวังว่า
เทคนิคนี้จะเป็นประโยชน์และเป็นที่ยอมรับอย่างกว้างขวางส�าหรับนักศึกษาฟิสิกส์
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propagator for such a system. We then compare the 
propagator obtained with the one obtained using the  
Feynman path integral in the work of Poon and Muñoz 
(1999). 

 To establish our notation, we write the Feynman 
propagator for a time independent nonrelativistic system 
with Hamiltonian operator  in the form:

 

   
  

                   

derived the propagators for a damped harmonic 
oscillator with time-dependent mass and frequency 
and a time-dependent inverted harmonic oscillator by 
using Schwinger’s method as well. 

As previously stated, Schwinger's approach 
is commonly employed to derive the propagator of 
non-relativistic systems. However, it is far less widely 
utilized compared to the Feynman path integral.  To 
confirm that Schwinger's method is extremely 
powerful also, our purpose in this paper is to provide 
the reader with the propagator for a simple harmonic 
oscillator coupled to a constant electric field that is 
computed in a straightforward way by Schwinger’ s 
method, which is based on the solution of the 
Heisenberg operator equations of motion. The use of 
proper operator ordering and the subsidiary and 
initial conditions yields the propagator for such a 
system.  We then compare the propagator obtained 
with the one obtained using the Feynman path 
integral in the work of Poon and Muñoz (1999).   

To establish our notation, we write the 
Feynman propagator for a time independent 
nonrelativistic system with Hamiltonian operator Ĥ  
in the form: 
        ˆ( , ; ) ( ) ( )b a b aK x x x U x   =         (1) 
where ˆ ( )U   is the time evolution operator: 
                 ( )ˆ ˆ( ) exp /U iH = −              (2) 
and  ( )   is the step function defined by 

                  
1 if 0

( )
0 if 0


 




=  
                (3) 

First, observe that for 0  , Eq. ( 1 )  leads to the 
differential equation for the Feynman propagator: 
 

ˆ ˆ( , ; ) expb a b a
ii K x x x H H x 


  = −   

                 

                                                                 (4) 
By using the general relation between operators in 
the Heisenberg and Schrödinger pictures, 
                 ˆ ˆ/ /ˆ ˆ( ) iHt iHt

H SO t e O e−=                (5) 

it is not difficult to show that if x  is an eigenvector 
of the operator X̂  with eigenvalue x , then it is also 
true that 
            ˆ ( ) , ,X t x t x x t=                         (6) 
where 
                    ˆ ˆ/ /ˆ ˆ( ) iHt iHtX t e Xe−=                (7) 
and ,x t  is defined as 

                    ˆ /, iHtx t e x=                      (8) 
Using this notation, the Feynman propagator can be 
written as: 
          ( , ; ) , ,0b a b aK x x x x =                (9) 
where 
          ˆ ( ) , ,b b bX x x x  =                  (10a)                                                                  
          ˆ (0) ,0 ,0a a aX x x x=                 (10b) 
The differential equation for the Feynman propagator, 
Eq.(4), takes the form 

ˆ, ,0 , ,0 ( 0)b a b ai x x x H x  



= 


                 

                                                              (11) 
The form of Eq. (11) is very suggestive and 

is the starting point for the very elegant operator 
method introduced by Schwinger.  The main idea is 
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   ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ), , ( ) ( ),i X t X t H i P t P t H
t t
 

= =
 

                                                                  

                                                             (12) 
Equations (12) follow directly from Eq. (5).  
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the operators ˆ (0)X  and ˆ ( )X   ordered in such a 
way that in each term of Ĥ , the operator ˆ ( )X   
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of Eq.  (11)  by writing Ĥ  in terms of the operators 
ˆ ( )X   and ˆ (0)X , appropriately ordered. 

Schwinger’ s method can be summarized by the 
following steps: 

( i)  Solve the Heisenberg equations for the 
operators ˆ ( )X   and ˆ( )P  , which are given by: 

                          

   ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ), , ( ) ( ),i X t X t H i P t P t H
t t
 

= =
 

                                                                  

                                                             (12) 
Equations (12) follow directly from Eq. (5).  

(ii) Use the solutions obtained in step (1) to 
rewrite the Hamiltonian operator Ĥ  as a function of 
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 Equations (12) follow directly from Eq. (5). 

 (ii) Use the solutions obtained in step (1) to 
rewrite the Hamiltonian operator  as a function of the 
operators (0) and (τ) ordered in such a way that 
in each term of , the operator (τ) must appear on 
the left-hand side, while the operator (0) must appear 
on the right-hand side. This ordering can be done easily  
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Introduction
The calculation of the propagator for a quantum  
mechanical system can be approached through various 
methods. Among these, the most prevalent method involves 
solving the time-dependent Schrödinger equation. Another 
technique entails constructing the matrix element of the 
unitary time operator within the spatial framework. These 
methodologies, along with others, necessitate a profound 
knowledge of the Hamiltonian operator. It is fair to say that 
the Feynman path integral (Feynman, 1948) is a powerful 
and elegant approach for computing the propagator. This 
method harnesses the Lagrangian formalism, transforming  
position and momentum from operators into ordinary 
classical quantities, such as in the famous textbook by 
Feynman and Hibbs (Feynman & Hibbs, 1965), where they 
elucidated the computation of propagators for harmonic 
oscillators by using the Feynman path integral. Recently 
Poon and Muñoz (Poon & Muñoz, 1999) employed this 
technique to compute the non-relativistic propagator for a 
general quadratic Lagrangian—natural point of departure 
if one intends to do perturbation theory in the path integral 
approach. They also applied this approach to calculate 
the propagator of a simple harmonic oscillator coupled 
to a constant electric field. A recent research paper by 
Chaithanapreecha and Yongram (Chaithanapreecha 
& Yongram, 2023) used the Feynman path integral  
to calculate the propagator or a damped harmonic  
oscillator coupled to an electric field. And so on (Cohem,  
1998; Brown & Zhang, 1994; Farina, Maneschy &  
Neves, 1993; Holstein, 1985; Mannheim, 1988).

 Moreover, Schwinger (1951) developed a 
beautiful and powerful method, which is the so-called 
Schwinger’s method (SM), in the context of relativistic 
quantum field theory to treat effective actions in quantum 
electrodynamics (QED). However, Schwinger’s approach 
is highly suited for calculating non-relativistic propagators, 
such as the recent work done by Urrutia and Hernández 
(1984) using Schwinger’s action principle to calculate the 
Feynman propagator for a damped harmonic oscillator 
with a time-dependent frequency under a time-dependent  
external force. To the best of our understanding,  
subsequent to that time, only a limited number of papers 
have been authored utilizing this approach, namely: in 
1986, Urrutia and Manterola (Urrutia & Manterola, 1986)  

used it in the problem of an anharmonic charged  
oscillator under a magnetic field; througout the same 
calendar year, Horing, Cui, and Fiorenza (Horing, Cui, 
& Fiorenza, 1986) applied Schwinger’s method to obtain 
the Green function for crossed time-dependent electric 
and magnetic fields; in 1993, Fararina & Segui-Santonja 
(1993) published a calculation of the Feynman propagator 
for a harmonic oscillator with a time-dependent frequency 
by using Schwinger’s method. Rabello & Farina (1995) 
used a gauge covariant poperatot technique which led 
to a deduced path integral for a charged particle in  
an arbitrary stationary magnetic field, verifying the  
midpoint-rule for the discrete form of the interaction 
term with the vector potential. For evaluating the small 
time propagator they used a method developed by  
Schwinger; Barone, Boschi-Filho & Farina (2003) used 
Schwinger’s method to obtain the Feynman propagator  
for the nonrelativistic harmonic oscillator; Aragão,  
Boschi-Filho, Farina, and Barone (Aragão, Boschi-Filho, 
Farina & Barone, 2007) reconsidered the Feynman  
propagator of two non-relativistic systems: a charged 
particle in a uniformed magnetic field and a charged 
harmonic oscillator in a uniform magnetic field by using 
Schwinger’s method. Instead of solving the Heisenberg 
equations for the position and the canonical momentum  
operator, they applied this method by solving the  
Heisenberg equations for the gauge invariant operators.; 
Pepore, Kirdmanee, and Sukbot (2017) and Thongpool 
& Pepore (2022) derived the propagators for a damped 
harmonic oscillator with time-dependent mass and  
frequency and a time-dependent inverted harmonic  
oscillator by using Schwinger’s method as well.

 As previously stated, Schwinger’s approach 
is commonly employed to derive the propagator of  
non-relativistic systems. However, it is far less widely  
utilized compared to the Feynman path integral. To  
confirm that Schwinger’s method is extremely powerful  
also, our purpose in this paper is to provide the reader  
with the propagator for a simple harmonic oscillator 
coupled to a constant electric field that is computed in 
a straightforward way by Schwinger’s method, which 
is based on the solution of the Heisenberg operator  
equations of motion. The use of proper operator ordering  
and the subsidiary and initial conditions yields the  
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propagator for such a system. We then compare the 
propagator obtained with the one obtained using the  
Feynman path integral in the work of Poon and Muñoz 
(1999). 

 To establish our notation, we write the Feynman 
propagator for a time independent nonrelativistic system 
with Hamiltonian operator  in the form:
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Equations (12) follow directly from Eq. (5).  

(ii) Use the solutions obtained in step (1) to 
rewrite the Hamiltonian operator Ĥ  as a function of 
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in the form: 
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First, observe that for 0  , Eq. ( 1 )  leads to the 
differential equation for the Feynman propagator: 
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          ˆ (0) ,0 ,0a a aX x x x=                 (10b) 
The differential equation for the Feynman propagator, 
Eq.(4), takes the form 
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of Eq.  (11)  by writing Ĥ  in terms of the operators 
ˆ ( )X   and ˆ (0)X , appropriately ordered. 

Schwinger’ s method can be summarized by the 
following steps: 

( i)  Solve the Heisenberg equations for the 
operators ˆ ( )X   and ˆ( )P  , which are given by: 

                          

   ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ), , ( ) ( ),i X t X t H i P t P t H
t t
 

= =
 

                                                                  

                                                             (12) 
Equations (12) follow directly from Eq. (5).  

(ii) Use the solutions obtained in step (1) to 
rewrite the Hamiltonian operator Ĥ  as a function of 
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in the form: 
        ˆ( , ; ) ( ) ( )b a b aK x x x U x   =         (1) 
where ˆ ( )U   is the time evolution operator: 
                 ( )ˆ ˆ( ) exp /U iH = −              (2) 
and  ( )   is the step function defined by 

                  
1 if 0

( )
0 if 0


 




=  
                (3) 

First, observe that for 0  , Eq. ( 1 )  leads to the 
differential equation for the Feynman propagator: 
 

ˆ ˆ( , ; ) expb a b a
ii K x x x H H x 


  = −   

                 

                                                                 (4) 
By using the general relation between operators in 
the Heisenberg and Schrödinger pictures, 
                 ˆ ˆ/ /ˆ ˆ( ) iHt iHt

H SO t e O e−=                (5) 

it is not difficult to show that if x  is an eigenvector 
of the operator X̂  with eigenvalue x , then it is also 
true that 
            ˆ ( ) , ,X t x t x x t=                         (6) 
where 
                    ˆ ˆ/ /ˆ ˆ( ) iHt iHtX t e Xe−=                (7) 
and ,x t  is defined as 

                    ˆ /, iHtx t e x=                      (8) 
Using this notation, the Feynman propagator can be 
written as: 
          ( , ; ) , ,0b a b aK x x x x =                (9) 
where 
          ˆ ( ) , ,b b bX x x x  =                  (10a)                                                                  
          ˆ (0) ,0 ,0a a aX x x x=                 (10b) 
The differential equation for the Feynman propagator, 
Eq.(4), takes the form 

ˆ, ,0 , ,0 ( 0)b a b ai x x x H x  



= 


                 

                                                              (11) 
The form of Eq. (11) is very suggestive and 

is the starting point for the very elegant operator 
method introduced by Schwinger.  The main idea is 
to calculate the matrix element on the right-hand side 
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in the form: 
        ˆ( , ; ) ( ) ( )b a b aK x x x U x   =         (1) 
where ˆ ( )U   is the time evolution operator: 
                 ( )ˆ ˆ( ) exp /U iH = −              (2) 
and  ( )   is the step function defined by 

                  
1 if 0

( )
0 if 0


 




=  
                (3) 

First, observe that for 0  , Eq. ( 1 )  leads to the 
differential equation for the Feynman propagator: 
 

ˆ ˆ( , ; ) expb a b a
ii K x x x H H x 


  = −   

                 

                                                                 (4) 
By using the general relation between operators in 
the Heisenberg and Schrödinger pictures, 
                 ˆ ˆ/ /ˆ ˆ( ) iHt iHt

H SO t e O e−=                (5) 

it is not difficult to show that if x  is an eigenvector 
of the operator X̂  with eigenvalue x , then it is also 
true that 
            ˆ ( ) , ,X t x t x x t=                         (6) 
where 
                    ˆ ˆ/ /ˆ ˆ( ) iHt iHtX t e Xe−=                (7) 
and ,x t  is defined as 

                    ˆ /, iHtx t e x=                      (8) 
Using this notation, the Feynman propagator can be 
written as: 
          ( , ; ) , ,0b a b aK x x x x =                (9) 
where 
          ˆ ( ) , ,b b bX x x x  =                  (10a)                                                                  
          ˆ (0) ,0 ,0a a aX x x x=                 (10b) 
The differential equation for the Feynman propagator, 
Eq.(4), takes the form 

ˆ, ,0 , ,0 ( 0)b a b ai x x x H x  



= 


                 

                                                              (11) 
The form of Eq. (11) is very suggestive and 

is the starting point for the very elegant operator 
method introduced by Schwinger.  The main idea is 
to calculate the matrix element on the right-hand side 
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the operators ˆ (0)X  and ˆ ( )X   ordered in such a 
way that in each term of Ĥ , the operator ˆ ( )X   
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 Equations (12) follow directly from Eq. (5). 

 (ii) Use the solutions obtained in step (1) to 
rewrite the Hamiltonian operator  as a function of the 
operators (0) and (τ) ordered in such a way that 
in each term of , the operator (τ) must appear on 
the left-hand side, while the operator (0) must appear 
on the right-hand side. This ordering can be done easily  
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Introduction
The calculation of the propagator for a quantum  
mechanical system can be approached through various 
methods. Among these, the most prevalent method involves 
solving the time-dependent Schrödinger equation. Another 
technique entails constructing the matrix element of the 
unitary time operator within the spatial framework. These 
methodologies, along with others, necessitate a profound 
knowledge of the Hamiltonian operator. It is fair to say that 
the Feynman path integral (Feynman, 1948) is a powerful 
and elegant approach for computing the propagator. This 
method harnesses the Lagrangian formalism, transforming  
position and momentum from operators into ordinary 
classical quantities, such as in the famous textbook by 
Feynman and Hibbs (Feynman & Hibbs, 1965), where they 
elucidated the computation of propagators for harmonic 
oscillators by using the Feynman path integral. Recently 
Poon and Muñoz (Poon & Muñoz, 1999) employed this 
technique to compute the non-relativistic propagator for a 
general quadratic Lagrangian—natural point of departure 
if one intends to do perturbation theory in the path integral 
approach. They also applied this approach to calculate 
the propagator of a simple harmonic oscillator coupled 
to a constant electric field. A recent research paper by 
Chaithanapreecha and Yongram (Chaithanapreecha 
& Yongram, 2023) used the Feynman path integral  
to calculate the propagator or a damped harmonic  
oscillator coupled to an electric field. And so on (Cohem,  
1998; Brown & Zhang, 1994; Farina, Maneschy &  
Neves, 1993; Holstein, 1985; Mannheim, 1988).

 Moreover, Schwinger (1951) developed a 
beautiful and powerful method, which is the so-called 
Schwinger’s method (SM), in the context of relativistic 
quantum field theory to treat effective actions in quantum 
electrodynamics (QED). However, Schwinger’s approach 
is highly suited for calculating non-relativistic propagators, 
such as the recent work done by Urrutia and Hernández 
(1984) using Schwinger’s action principle to calculate the 
Feynman propagator for a damped harmonic oscillator 
with a time-dependent frequency under a time-dependent  
external force. To the best of our understanding,  
subsequent to that time, only a limited number of papers 
have been authored utilizing this approach, namely: in 
1986, Urrutia and Manterola (Urrutia & Manterola, 1986)  

used it in the problem of an anharmonic charged  
oscillator under a magnetic field; througout the same 
calendar year, Horing, Cui, and Fiorenza (Horing, Cui, 
& Fiorenza, 1986) applied Schwinger’s method to obtain 
the Green function for crossed time-dependent electric 
and magnetic fields; in 1993, Fararina & Segui-Santonja 
(1993) published a calculation of the Feynman propagator 
for a harmonic oscillator with a time-dependent frequency 
by using Schwinger’s method. Rabello & Farina (1995) 
used a gauge covariant poperatot technique which led 
to a deduced path integral for a charged particle in  
an arbitrary stationary magnetic field, verifying the  
midpoint-rule for the discrete form of the interaction 
term with the vector potential. For evaluating the small 
time propagator they used a method developed by  
Schwinger; Barone, Boschi-Filho & Farina (2003) used 
Schwinger’s method to obtain the Feynman propagator  
for the nonrelativistic harmonic oscillator; Aragão,  
Boschi-Filho, Farina, and Barone (Aragão, Boschi-Filho, 
Farina & Barone, 2007) reconsidered the Feynman  
propagator of two non-relativistic systems: a charged 
particle in a uniformed magnetic field and a charged 
harmonic oscillator in a uniform magnetic field by using 
Schwinger’s method. Instead of solving the Heisenberg 
equations for the position and the canonical momentum  
operator, they applied this method by solving the  
Heisenberg equations for the gauge invariant operators.; 
Pepore, Kirdmanee, and Sukbot (2017) and Thongpool 
& Pepore (2022) derived the propagators for a damped 
harmonic oscillator with time-dependent mass and  
frequency and a time-dependent inverted harmonic  
oscillator by using Schwinger’s method as well.

 As previously stated, Schwinger’s approach 
is commonly employed to derive the propagator of  
non-relativistic systems. However, it is far less widely  
utilized compared to the Feynman path integral. To  
confirm that Schwinger’s method is extremely powerful  
also, our purpose in this paper is to provide the reader  
with the propagator for a simple harmonic oscillator 
coupled to a constant electric field that is computed in 
a straightforward way by Schwinger’s method, which 
is based on the solution of the Heisenberg operator  
equations of motion. The use of proper operator ordering  
and the subsidiary and initial conditions yields the  
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must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

 (23)

 If we substitute this result into Eq. (19), we obtain 

 

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  
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2
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b

m x x x x
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= + −

+ −

− −

     

                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )
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2 2 2
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2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
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a b

i mx x C x x d

x x x x

qE x xq E
m m
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= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
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( , ), ,0 exp
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cos 2
2 sin

4 sin
2
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b a b a
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C x x imx x x x
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qE
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= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

 (24)

 Note that the third term in Eq. (24) is not written  
in the appropriate order. By using the commutation  
relation
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2
2

2 2
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2 2 4
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ˆ ˆ ˆ( ) (0)cos
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ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
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2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  
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4 sin csc cot
2 2

b a b a

a

b

m x x x x
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= + −
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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2 2

, ,0 ( , ) exp
2
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2

sin csc cot
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a b

i mx x C x x d

x x x x

qE x xq E
m m
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= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )
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 ( )



2 2

2
2

( , ), ,0 exp
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cos 2
2 sin

4 sin
2

sin

b a
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C x x imx x x x
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= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

  (25) 

 It follows immediately that
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2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2
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44 sin csc sin csc
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4 sin csc cot
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b a b a

a

b

m x x x x
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= + −

+ −
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )
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2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

 (26)

 If we substitute Eq. (26) into Eq. (24), we obtain 
the ordered Hamiltonian:
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2 4

2 2 4
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ˆ ˆ ˆ( ) (0)cos
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ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
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2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
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qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  
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2
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2
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4 sin csc cot
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b a b a
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b

m x x x x

qExq E
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= + −
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )
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2 2

, ,0 ( , ) exp
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qE x xq E
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= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a
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C x x imx x x x
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= +

 − +

 + −
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

 (27)

 Once the Hamiltonian operator is appropriately 
ordered, we can find the function H(xb,xa;τ) directly from 
its definition, given by Eq. (13):
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= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
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ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m
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m

  





= +
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                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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2
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2

ord
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= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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x H x
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x x
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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= +
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 + −
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 
   (28)

 By using Eq. (14), we can express the propagator 
in the following form:

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2

2 2
4 2 2 2

2 4 2

2 2
2

csc 2 cot csc
2

44 sin csc sin csc
2 2

4 sin csc cot
2 2

b a b a

a

b

m x x x x

qExq E
m m

qEx i
m

   

  
 

  


= + −

+ −

− −

     

                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

(29)

 The integration over  in Eq. (29) can be readily 
evaluated:

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2

2 2
4 2 2 2

2 4 2

2 2
2

csc 2 cot csc
2

44 sin csc sin csc
2 2

4 sin csc cot
2 2

b a b a

a

b

m x x x x

qExq E
m m

qEx i
m

   

  
 

  


= + −

+ −

− −

     

                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

 (30)

 where C(xb,xa) is an arbitrary integration constant 
to be determined according to step (iii).

 The determination of C(xb,xa) is done with the 
aid of Eqs. (15) and (17). However, we need to rewrite 
the operators (0) and (τ) in terms of the operators  

(τ) and (0), appropriately ordered. For (0) this task 
has already been done (see Eq.(23)), and for (τ) we 
find after substituting Eq. (23) into Eq. (22):

 

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2

2 2
4 2 2 2

2 4 2

2 2
2

csc 2 cot csc
2

44 sin csc sin csc
2 2

4 sin csc cot
2 2

b a b a

a

b

m x x x x

qExq E
m m

qEx i
m

   

  
 

  


= + −

+ −

− −

     

                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

        (31)

 Then, by inserting Eqs. (31) and (30) into Eq. 
(15a) it is not difficult to show that:
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with the help of the commutator [ (0), (τ)] (see  
Eq. (25)). We shall refer to the Hamiltonian operator 
written in this way as the ordered Hamiltonian operator  

ord( (τ), (0)). After this ordering, the matrix  
element on the right-hand side of Eq. (11) can be readily 
evaluated:

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

(13)

 where we have defined the function H. The  
latter is a c-number and not an operator. If we substitute 
this result in Eq. (11) and integrate over τ, we obtain:

  

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

 (14)

 where C(xb,xa) is an arbitrary integration  
constant.

 (iii)The last step is devoted to the calculation of 
C(xb,xa). Its dependence on xb and xa can be determined 
by imposing the following conditions:

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

       (15a)

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

      (15b)

 These equations come from the definitions in 
Eq. (10) together with the assumption that the usual 
commutation relations hold at any time:

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 
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ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0
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b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

       (16)

 After using Eq. (15), there is still a multiplicative 
factor to be determined in C(xb,xa). This can be done 
simply by imposing the propagator initial condition:

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain              (17)

Derivation of the propagator
 We start the calculation of the propagator for a 
simple harmonic oscillator coupled to a constant electric 
field by using the Schwinger method. The Hamiltonian 
operator of this system can be written as 

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
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ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
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2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  
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 where m is the mass of the particle, ω is 
natural frequency of oscillation, q is an electric charged, 
and  E is an electric field. We rewrite Eq. (18) as the  
time-independent Hamiltonian operator, it reads

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 
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                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 
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, ,0 ( , )exp
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b a b a

b a

ix x C x x d
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                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a
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 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 
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For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
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qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 
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                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  
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 despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work with 
the Hamiltonian operator given by Eq.(18) or by Eq.(19). 
For simplicity, we choose the latter.

 As stated in step (i), we start by writing down 
the corresponding Heisenberg equations:

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
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where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 
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                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

          (20a)

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

          (20b)

 whose solutions permit us to write for t = τ that

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

 (21)

 For later convenience, we also write the  
corresponding expression for (τ):

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

        (22)

 To complete step (ii) we need to rewrite (0) 
in terms of (τ) and (0), which can be done directly 
from Eq.(21):
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must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

 (23)

 If we substitute this result into Eq. (19), we obtain 

 

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2

2 2
4 2 2 2

2 4 2

2 2
2

csc 2 cot csc
2

44 sin csc sin csc
2 2

4 sin csc cot
2 2

b a b a

a

b

m x x x x

qExq E
m m

qEx i
m

   

  
 

  


= + −

+ −

− −

     

                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

 (24)

 Note that the third term in Eq. (24) is not written  
in the appropriate order. By using the commutation  
relation

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2

2 2
4 2 2 2

2 4 2
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
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If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin
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 (26)

 If we substitute Eq. (26) into Eq. (24), we obtain 
the ordered Hamiltonian:
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −
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                                                                (31) 

 (27)

 Once the Hamiltonian operator is appropriately 
ordered, we can find the function H(xb,xa;τ) directly from 
its definition, given by Eq. (13):
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos
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   (28)

 By using Eq. (14), we can express the propagator 
in the following form:
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 
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If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 
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 The integration over  in Eq. (29) can be readily 
evaluated:
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Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 
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If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 
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Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

        (31)

 Then, by inserting Eqs. (31) and (30) into Eq. 
(15a) it is not difficult to show that:
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with the help of the commutator [ (0), (τ)] (see  
Eq. (25)). We shall refer to the Hamiltonian operator 
written in this way as the ordered Hamiltonian operator  

ord( (τ), (0)). After this ordering, the matrix  
element on the right-hand side of Eq. (11) can be readily 
evaluated:

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2
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2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 
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sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

(13)

 where we have defined the function H. The  
latter is a c-number and not an operator. If we substitute 
this result in Eq. (11) and integrate over τ, we obtain:

  

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 
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                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(
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, ,0 ( , )exp
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H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
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= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→
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Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t
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whose solutions permit us to write for t =  that 
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corresponding expression for ˆ( )P   : 
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To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 
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  If we substitute this result into Eq. (19), we obtain  

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 
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x H x x H X X x
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                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 
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, ,0 ( , )exp
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H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 
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b
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= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a
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= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
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Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  
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where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 
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despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
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As stated in step (i), we start by writing down 
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To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 
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  If we substitute this result into Eq. (19), we obtain  
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 where C(xb,xa) is an arbitrary integration  
constant.

 (iii)The last step is devoted to the calculation of 
C(xb,xa). Its dependence on xb and xa can be determined 
by imposing the following conditions:

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
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where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 
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                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 
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These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
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After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
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Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  
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result in Eq. (11) and integrate over , we obtain: 
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where ( , )b aC x x  is an arbitrary integration 
constant. 
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Derivation of the propagator 
We start the calculation of the propagator for 
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despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

      (15b)

 These equations come from the definitions in 
Eq. (10) together with the assumption that the usual 
commutation relations hold at any time:

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 
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2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
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                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

       (16)

 After using Eq. (15), there is still a multiplicative 
factor to be determined in C(xb,xa). This can be done 
simply by imposing the propagator initial condition:

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 
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ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain              (17)

Derivation of the propagator
 We start the calculation of the propagator for a 
simple harmonic oscillator coupled to a constant electric 
field by using the Schwinger method. The Hamiltonian 
operator of this system can be written as 

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

 (18)

 where m is the mass of the particle, ω is 
natural frequency of oscillation, q is an electric charged, 
and  E is an electric field. We rewrite Eq. (18) as the  
time-independent Hamiltonian operator, it reads

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

 (19)

 despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work with 
the Hamiltonian operator given by Eq.(18) or by Eq.(19). 
For simplicity, we choose the latter.

 As stated in step (i), we start by writing down 
the corresponding Heisenberg equations:

 

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 
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                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(
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, ,0 ( , )exp
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b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a
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 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
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lim , ,0 ( )b a b ax x x x


 
+→
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Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 
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2
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For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos
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P m X P
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+
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To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 
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sin 2

m qEP X X
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                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  
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must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 
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                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 
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                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 
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These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
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Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  
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pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 
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2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 
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            2ˆ ˆ( ) ( )d P t m X t qE
dt
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For later convenience, we also write the 
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P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 
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2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

          (20b)

 whose solutions permit us to write for t = τ that

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

 (21)

 For later convenience, we also write the  
corresponding expression for (τ):

   
  

                   

must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

        (22)

 To complete step (ii) we need to rewrite (0) 
in terms of (τ) and (0), which can be done directly 
from Eq.(21):

Calculation of the propagator for a simple harmonic oscillator coupled to  
a constant electric field via Schwinger’s method
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must appear on the left-hand side, while the operator 
ˆ (0)X  must appear on the right- hand side.  This 

ordering can be done easily with the help of the 
commutator  ˆ ˆ(0), ( )X X    (see Eq.  (25) ) .  We 
shall refer to the Hamiltonian operator written in this 
way as the ordered Hamiltonian operator

( )ˆ ˆ ˆ( ), (0)ordH X X . After this ordering, the matrix 
element on the right-hand side of Eq.  ( 11)  can be 
readily evaluated: 

( )
( )

ˆ ˆ ˆ ˆ, ,0 , ( ), (0) ,0

, ; , ,0
b a b ord a

b a b a

x H x x H X X x

H x x x x

  

 

=


     

                                                           (13) 
where we have defined the function H . The latter is 
a c-number and not an operator. If we substitute this 
result in Eq. (11) and integrate over , we obtain: 

(

( ))

, ,0 ( , )exp

, ;

b a b a

b a

ix x C x x d

H x x


 



= −



                                                                     

                                                                (14) 
where ( , )b aC x x  is an arbitrary integration 
constant. 

(iii)The last step is devoted to the calculation 
of ( , )b aC x x . Its dependence on bx  and ax  can be 
determined by imposing the following conditions: 

 ˆ, ( ) ,0 , ,0b a b a
b

x P x i x x
x

  
= −


(15a) 

ˆ, (0) ,0 , ,0b a b a
a

x P x i x x
x

 
= +


 (15b) 

These equations come from the definitions in Eq. (10) 
together with the assumption that the usual 
commutation relations hold at any time: 
          ˆ ˆ ˆ ˆ( ), ( ) (0), (0)X P X P i  = =        (16) 
After using Eq.  ( 15) , there is still a multiplicative 
factor to be determined in ( , )b aC x x .  This can be 
done simply by imposing the propagator initial 
condition: 
           

0
lim , ,0 ( )b a b ax x x x


 
+→

= −         (17) 

 

Derivation of the propagator 
We start the calculation of the propagator for 

a simple harmonic oscillator coupled to a constant 
electric field by using the Schwinger method.  The 
Hamiltonian operator of this system can be written as  

    
2

2 2ˆ ( ) 1ˆ ˆ ˆ( ) ( )
2 2

pH m X qEX
m
   = + −     (18) 

where m is the mass of the particle,   is natural 
frequency of oscillation, q  is an electric charged, 
and E is an electric field.   We rewrite Eq.  ( 18)  as 
the time-independent Hamiltonian operator, it reads 

   
2

2 2ˆ (0) 1ˆ ˆ ˆ(0) (0)
2 2

pH m X qEX
m

= + −      (19) 

despite the fact that the operator and are explicitly 
time dependent. It is matter of choice whether to work 
with the Hamiltonian operator given by Eq.(18) or by 
Eq.(19). For simplicity, we choose the latter. 

As stated in step (i), we start by writing down 
the corresponding Heisenberg equations: 

           
ˆ( )ˆ ( )d P tX t

dt m
=                            (20a) 

            2ˆ ˆ( ) ( )d P t m X t qE
dt

= − +           (20b) 

whose solutions permit us to write for t =  that 

2
2

ˆ(0) 2ˆ ˆ( ) (0)cos sin sin
2

P qEX X
m m

  
 

= + −      

                                                           (21) 
For later convenience, we also write the 
corresponding expression for ˆ( )P   : 
ˆ ˆ ˆ( ) (0)sin (0)cos

sin

P m X P
qE

   




= − +

+
    (22) 

To complete step ( ii)  we need to rewrite ˆ(0)P in 
terms of ˆ ( )X  and ˆ (0)X , which can be done 
directly from Eq.(21): 

 2
2

2ˆ ˆ ˆ(0) ( ) (0)cos sin
sin 2

m qEP X X
m

  
 

= − −      

                                                           (23) 
  If we substitute this result into Eq. (19), we obtain  

 (23)

 If we substitute this result into Eq. (19), we obtain 

 

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2

2 2
4 2 2 2

2 4 2

2 2
2

csc 2 cot csc
2

44 sin csc sin csc
2 2

4 sin csc cot
2 2

b a b a

a

b

m x x x x

qExq E
m m

qEx i
m

   

  
 

  


= + −

+ −

− −

     

                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

 (24)

 Note that the third term in Eq. (24) is not written  
in the appropriate order. By using the commutation  
relation

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2

2 2
4 2 2 2

2 4 2

2 2
2

csc 2 cot csc
2

44 sin csc sin csc
2 2

4 sin csc cot
2 2

b a b a

a

b

m x x x x

qExq E
m m

qEx i
m

   

  
 

  


= + −

+ −

− −

     

                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

  (25) 

 It follows immediately that

 

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX

  


   



  

 



= +

− −

+

− +

+ −

        

                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 

  

( )2
2

ˆ(0)ˆ ˆ ˆ ˆ(0), ( ) (0), (0)cos sin

2 sin / 2

PX X X X
m

qE
m

  





= +

− 

 

                  sini
m




=                          (25)                                   

It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 

         



( )

2
2 2

2

2 2
4 2

2 4 2

2
2

ˆ ˆ ˆ ˆ ˆ( ) (0) 2 ( ) (0)cos
2sin

ˆ4 4 (0)sin sin
2 2

ˆ4 ( ) sin / 2 cot
2

ord
mH X X X X

q E qEX
m m
qEX i
m

   


 
 

  


= + −

+ −

− −

     

                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2

2 2
4 2 2 2

2 4 2

2 2
2

csc 2 cot csc
2

44 sin csc sin csc
2 2

4 sin csc cot
2 2

b a b a

a

b

m x x x x

qExq E
m m

qEx i
m

   

  
 

  


= + −

+ −

− −

     

                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 

 ( ( )

)

 ( )



2 2

2
2

( , ), ,0 exp
2 sinsin

cos 2
2 sin

4 sin
2

sin

b a
b a b a

b a

b a

C x x imx x x x

iqEx x

qEx x
m

qE
m





 




 


= +

 − +

 + −

+

     

                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

 (26)

 If we substitute Eq. (26) into Eq. (24), we obtain 
the ordered Hamiltonian:

   
  

                   





2
2 2 2

2

2
2

2 2
2 4

2 2 4

2 2

ˆ ˆ ˆ( ) (0)cos
2sin

ˆ ˆ ˆ ˆ(0) ( )cos ( ) (0)cos
ˆ4 (0) cos sin

2
ˆ4 ( ) 4sin sin ( /2)

2
1 ˆ ˆ(0) (0)
2

mH X X

X X X X

qEX
m

qEX q E
m m

m X qEX
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
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= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 

 (27)

 Once the Hamiltonian operator is appropriately 
ordered, we can find the function H(xb,xa;τ) directly from 
its definition, given by Eq. (13):
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
m

  


= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
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= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X

    

  


= −

− +
             

                                                                (31) 
   (28)

 By using Eq. (14), we can express the propagator 
in the following form:
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
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= +    (26) 

If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 

 

( ( ) )



2

2 2 2

2 2
4 2

2 4 2

2 2

, ,0 ( , ) exp
2

csc 2 cot csc

4 ( )4 sin csc
2

sin csc cot
2 2

b a b a

b a b a

a b

i mx x C x x d

x x x x

qE x xq E
m m

i

  

  

 
 
  

= −

   + −

 ++ −


  −



     

                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos
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                                                                (31) 
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 The integration over  in Eq. (29) can be readily 
evaluated:
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 

    ˆ ˆ ˆ ˆ(0) ( ) ( ) (0) siniX X X X
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If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 
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                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X
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                                                                (31) 

 (30)

 where C(xb,xa) is an arbitrary integration constant 
to be determined according to step (iii).

 The determination of C(xb,xa) is done with the 
aid of Eqs. (15) and (17). However, we need to rewrite 
the operators (0) and (τ) in terms of the operators  

(τ) and (0), appropriately ordered. For (0) this task 
has already been done (see Eq.(23)), and for (τ) we 
find after substituting Eq. (23) into Eq. (22):
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                                                                (24) 
Note that the third term in Eq.  (24)  is not written in 
the appropriate order.  By using the commutation 
relation 
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It follows immediately that 
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If we substitute Eq. (26) into Eq. (24), we obtain the 
ordered Hamiltonian: 
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                                                           (27) 
Once the Hamiltonian operator is 

appropriately ordered, we can find the function 
( , ; )b aH x x    directly from its definition, given by 

Eq. (13): 

  
ˆ, .0

( , ; )
, .0

b a
b a

b a

x H x
H x x

x x





=                                                                  

 ( )



2
2 2 2

2 2
4 2 2 2

2 4 2

2 2
2

csc 2 cot csc
2

44 sin csc sin csc
2 2

4 sin csc cot
2 2

b a b a

a

b

m x x x x

qExq E
m m

qEx i
m

   

  
 

  


= + −

+ −

− −

     

                                                           (28) 
By using Eq. (14), we can express the propagator in 
the following form: 
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                                                           (29) 
The integration over     in Eq.  (29)  can be readily 
evaluated: 
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                                                           (30) 
where ( , )b aC x x is an arbitrary integration constant 
to be determined according to step (iii). 

The determination of ( , )b aC x x  is done 
with the aid of Eqs. (15) and (17). However, we need 
to rewrite the operators ˆ(0)P  and ˆ( )P   in terms of 
the operators ˆ ( )X   and ˆ (0)X , appropriately 
ordered. For ˆ(0)P  this task has already been done 
( see Eq. ( 23) ) , and for ˆ( )P   we find after 
substituting Eq. (23) into Eq. (22): 

 ˆ ˆ ˆ( ) cot ( ) (0)cos

ˆ (0)sin sin

P m X X
qEm X
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        (31)

 Then, by inserting Eqs. (31) and (30) into Eq. 
(15a) it is not difficult to show that:
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Then, by inserting Eqs. (31) and (30) into Eq. (15a) 
it is not difficult to show that: 
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Analogously, by substituting Eqs. (23)  and (30)  into 
Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 

0 +→ on , ,0b ax x .  If we use Eq. (30) , we 
find that 
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If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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Conclusions
 We found the Feynman propagator of a simple 
harmonic oscillator connected to a constant electric field 
using Schwinger’s method, which is usually used in  
quantum field theory but also works well for non-relativistic 
quantum mechanical problems, even though they don’t 
happen very often. Schwinger’s method is based on the 
solution of the Heisenberg equations for the position 
and canonical momentum operators. Such solutions are 
then used to write the ordered Hamiltonian operator of 
the position operators  (O) and  (t). The utilization 
of proper operator ordering, along with subsidiary and 
initial conditions, results in the yield of such a propagator. 
We found that the propagator obtained is consistent with 
the one obtained using the Feynman path integral in the 

work of Poon and Muñoz (1999). Schwinger’s method 
is known for its strong focus on operator formalism  
and its applications in quantum field theory as well as  
non-relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation  
and its broad applicability to various quantum  
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that this 
pedagogical paper may be useful for undergraduate as 
well as graduate students and that a simple harmonic 
oscillator coupled to a constant electric field may enlarge 
the small list of non-relativistic problems that have been 
treated by such a powerful and elegant method.
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Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 

0 +→ on , ,0b ax x .  If we use Eq. (30) , we 
find that 
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If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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Then, by inserting Eqs. (31) and (30) into Eq. (15a) 
it is not difficult to show that: 
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Analogously, by substituting Eqs. (23)  and (30)  into 
Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 

0 +→ on , ,0b ax x .  If we use Eq. (30) , we 
find that 
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If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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 If we compare this result with the initial condition,  
Eq. (17), we obtain C = 

   
  

                   

Then, by inserting Eqs. (31) and (30) into Eq. (15a) 
it is not difficult to show that: 
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Analogously, by substituting Eqs. (23)  and (30)  into 
Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 
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find that 

 ( ) 2

0 0
lim , ,0 lim exp

2b a b a
C imx x x x

 


+ +→ →
= −                 

                                               

         ( )2
b a

iC x x
m
 


= −                      (33) 

If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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. By substituting  
this result for C into Eq.(30), we obtain the desired  
Feynman propagator for the harmonic oscillator:

   
  

                   

Then, by inserting Eqs. (31) and (30) into Eq. (15a) 
it is not difficult to show that: 
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Analogously, by substituting Eqs. (23)  and (30)  into 
Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 

0 +→ on , ,0b ax x .  If we use Eq. (30) , we 
find that 
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If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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Conclusions
 We found the Feynman propagator of a simple 
harmonic oscillator connected to a constant electric field 
using Schwinger’s method, which is usually used in  
quantum field theory but also works well for non-relativistic 
quantum mechanical problems, even though they don’t 
happen very often. Schwinger’s method is based on the 
solution of the Heisenberg equations for the position 
and canonical momentum operators. Such solutions are 
then used to write the ordered Hamiltonian operator of 
the position operators  (O) and  (t). The utilization 
of proper operator ordering, along with subsidiary and 
initial conditions, results in the yield of such a propagator. 
We found that the propagator obtained is consistent with 
the one obtained using the Feynman path integral in the 

work of Poon and Muñoz (1999). Schwinger’s method 
is known for its strong focus on operator formalism  
and its applications in quantum field theory as well as  
non-relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation  
and its broad applicability to various quantum  
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that this 
pedagogical paper may be useful for undergraduate as 
well as graduate students and that a simple harmonic 
oscillator coupled to a constant electric field may enlarge 
the small list of non-relativistic problems that have been 
treated by such a powerful and elegant method.
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Then, by inserting Eqs. (31) and (30) into Eq. (15a) 
it is not difficult to show that: 
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Analogously, by substituting Eqs. (23)  and (30)  into 
Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 

0 +→ on , ,0b ax x .  If we use Eq. (30) , we 
find that 
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If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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 Analogously, by substituting Eqs.(23) and (30) into 
Eq. (15b) we have that ∂C(xb,xa)/∂xa = 0. The last two 
relations tell us that C(xb,xa) = C, that is, it is a constant 
independent of xb and xa. In order to determine the value 
of C, we first take the limit τ → 0+ on 〈xb,τ│xa,0〉. If we 
use Eq.(30), we find that

 

   
  

                   

Then, by inserting Eqs. (31) and (30) into Eq. (15a) 
it is not difficult to show that: 
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Analogously, by substituting Eqs. (23)  and (30)  into 
Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 

0 +→ on , ,0b ax x .  If we use Eq. (30) , we 
find that 
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If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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Then, by inserting Eqs. (31) and (30) into Eq. (15a) 
it is not difficult to show that: 
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Analogously, by substituting Eqs. (23)  and (30)  into 
Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 

0 +→ on , ,0b ax x .  If we use Eq. (30) , we 
find that 
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If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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 If we compare this result with the initial condition,  
Eq. (17), we obtain C = 

   
  

                   

Then, by inserting Eqs. (31) and (30) into Eq. (15a) 
it is not difficult to show that: 
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Analogously, by substituting Eqs. (23)  and (30)  into 
Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 

0 +→ on , ,0b ax x .  If we use Eq. (30) , we 
find that 
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If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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. By substituting  
this result for C into Eq.(30), we obtain the desired  
Feynman propagator for the harmonic oscillator:

   
  

                   

Then, by inserting Eqs. (31) and (30) into Eq. (15a) 
it is not difficult to show that: 
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Analogously, by substituting Eqs. (23)  and (30)  into 
Eq. (15b) we have that ( , ) / 0b a aC x x x  = . The 
last two relations tell us that ( , )b aC x x C= , that is, 
it is a constant independent of bx  and ax .  In order 
to determine the value of C , we first take the limit 

0 +→ on , ,0b ax x .  If we use Eq. (30) , we 
find that 
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If we compare this result with the initial condition, Eq. 
(17) , we obtain / 2C m i = .  By substituting 
this result for C  into Eq.(30), we obtain the desired 
Feynman propagator for the harmonic oscillator: 
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Conclusions 

We found the Feynman propagator of a 
simple harmonic oscillator connected to a constant 
electric field using Schwinger's method, which is 
usually used in quantum field theory but also works 
well for non- relativistic quantum mechanical 
problems, even though they don't happen very often. 
Schwinger’ s method is based on the solution of the 
Heisenberg equations for the position and canonical 
momentum operators.  Such solutions are then used 
to write the ordered Hamiltonian operator of the 
position operators ˆ (0)X  and ˆ ( )X  .  The utilization 

of proper operator ordering, along with subsidiary 
and initial conditions, results in the yield of such a 
propagator.  We found that the propagator obtained 
is consistent with the one obtained using the 
Feynman path integral in the work of Poon and 
Muñoz (1999) .  Schwinger's method is known for its 
strong focus on operator formalism and its 
applications in quantum field theory as well as non-
relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation 
and its broad applicability to various quantum 
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that 
this pedagogical paper may be useful for 
undergraduate as well as graduate students and that 
a simple harmonic oscillator coupled to a constant 
electric field may enlarge the small list of non-
relativistic problems that have been treated by such 
a powerful and elegant method. 
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Conclusions
 We found the Feynman propagator of a simple 
harmonic oscillator connected to a constant electric field 
using Schwinger’s method, which is usually used in  
quantum field theory but also works well for non-relativistic 
quantum mechanical problems, even though they don’t 
happen very often. Schwinger’s method is based on the 
solution of the Heisenberg equations for the position 
and canonical momentum operators. Such solutions are 
then used to write the ordered Hamiltonian operator of 
the position operators  (O) and  (t). The utilization 
of proper operator ordering, along with subsidiary and 
initial conditions, results in the yield of such a propagator. 
We found that the propagator obtained is consistent with 
the one obtained using the Feynman path integral in the 

work of Poon and Muñoz (1999). Schwinger’s method 
is known for its strong focus on operator formalism  
and its applications in quantum field theory as well as  
non-relativistic quantum theory, whereas the path integral 
method is renowned for its probabilistic interpretation  
and its broad applicability to various quantum  
systems, making it an extremely powerful tool in both 
theoretical and computational physics. We hope that this 
pedagogical paper may be useful for undergraduate as 
well as graduate students and that a simple harmonic 
oscillator coupled to a constant electric field may enlarge 
the small list of non-relativistic problems that have been 
treated by such a powerful and elegant method.
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