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Calculation of the propagator for a simple harmonic oscillator coupled to a constant
electric field via Schwinger’s method
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Abstract

In this article, we compute the Feynman propagator for a simple harmonic oscillator coupled to a constant electric field
using Schwinger’'s method, which is based on the solution of the Heisenberg equations for the position and canonical
momentum operators. Such solutions are then used to write the ordered Hamiltonian operator of the position
operators )2 (0O) and )2' (t). The utilization of proper operator ordering, along with subsidiary and initial conditions,
results in the yield of such a propagator. We found that the propagator obtained is consistent with the one obtained
using the Feynman path integral in the work of Poon and Mufioz (Poon & Mufioz 1999). We anticipate that this

technique will be advantageous and widely recognized for physics students
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Introduction

The calculation of the propagator for a quantum
mechanical system can be approached through various
methods. Among these, the most prevalent method involves
solving the time-dependent Schrédinger equation. Another
technique entails constructing the matrix element of the
unitary time operator within the spatial framework. These
methodologies, along with others, necessitate a profound
knowledge of the Hamiltonian operator. It is fair to say that
the Feynman path integral (Feynman, 1948) is a powerful
and elegant approach for computing the propagator. This
method harnesses the Lagrangian formalism, transforming
position and momentum from operators into ordinary
classical quantities, such as in the famous textbook by
Feynman and Hibbs (Feynman & Hibbs, 1965), where they
elucidated the computation of propagators for harmonic
oscillators by using the Feynman path integral. Recently
Poon and Mufioz (Poon & Mufioz, 1999) employed this
technique to compute the non-relativistic propagator for a
general quadratic Lagrangian—natural point of departure
if one intends to do perturbation theory in the path integral
approach. They also applied this approach to calculate
the propagator of a simple harmonic oscillator coupled
to a constant electric field. A recent research paper by
Chaithanapreecha and Yongram (Chaithanapreecha
& Yongram, 2023) used the Feynman path integral
to calculate the propagator or a damped harmonic
oscillator coupled to an electric field. And so on (Cohem,
1998; Brown & Zhang, 1994; Farina, Maneschy &
Neves, 1993; Holstein, 1985; Mannheim, 1988).

Moreover, Schwinger (1951) developed a
beautiful and powerful method, which is the so-called
Schwinger's method (SM), in the context of relativistic
quantum field theory to treat effective actions in quantum
electrodynamics (QED). However, Schwinger’s approach
is highly suited for calculating non-relativistic propagators,
such as the recent work done by Urrutia and Hernandez
(1984) using Schwinger’s action principle to calculate the
Feynman propagator for a damped harmonic oscillator
with a time-dependent frequency under a time-dependent
external force. To the best of our understanding,
subsequent to that time, only a limited number of papers
have been authored utilizing this approach, namely: in
1986, Urrutia and Manterola (Urrutia & Manterola, 1986)
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used it in the problem of an anharmonic charged
oscillator under a magnetic field; througout the same
calendar year, Horing, Cui, and Fiorenza (Horing, Cui,
& Fiorenza, 1986) applied Schwinger's method to obtain
the Green function for crossed time-dependent electric
and magnetic fields; in 1993, Fararina & Segui-Santonja
(1993) published a calculation of the Feynman propagator
for a harmonic oscillator with a time-dependent frequency
by using Schwinger's method. Rabello & Farina (1995)
used a gauge covariant poperatot technique which led
to a deduced path integral for a charged particle in
an arbitrary stationary magnetic field, verifying the
midpoint-rule for the discrete form of the interaction
term with the vector potential. For evaluating the small
time propagator they used a method developed by
Schwinger; Barone, Boschi-Filho & Farina (2003) used
Schwinger's method to obtain the Feynman propagator
for the nonrelativistic harmonic oscillator; Aragéo,
Boschi-Filho, Farina, and Barone (Aragao, Boschi-Filho,
Farina & Barone, 2007) reconsidered the Feynman
propagator of two non-relativistic systems: a charged
particle in a uniformed magnetic field and a charged
harmonic oscillator in a uniform magnetic field by using
Schwinger's method. Instead of solving the Heisenberg
equations for the position and the canonical momentum
operator, they applied this method by solving the
Heisenberg equations for the gauge invariant operators.;
Pepore, Kirdmanee, and Sukbot (2017) and Thongpool
& Pepore (2022) derived the propagators for a damped
harmonic oscillator with time-dependent mass and
frequency and a time-dependent inverted harmonic

oscillator by using Schwinger's method as well.

As previously stated, Schwinger's approach
is commonly employed to derive the propagator of
non-relativistic systems. However, it is far less widely
utilized compared to the Feynman path integral. To
confirm that Schwinger's method is extremely powerful
also, our purpose in this paper is to provide the reader
with the propagator for a simple harmonic oscillator
coupled to a constant electric field that is computed in
a straightforward way by Schwinger's method, which
is based on the solution of the Heisenberg operator
equations of motion. The use of proper operator ordering

and the subsidiary and initial conditions yields the
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propagator for such a system. We then compare the
propagator obtained with the one obtained using the
Feynman path integral in the work of Poon and Mufioz
(1999).

To establish our notation, we write the Feynman
propagator for a time independent nonrelativistic system

with Hamiltonian operator I:I in the form:
K(xb,xa;r):6’(2')<xb|l7(r)|xa> (1
where U(T) is the time evolution operator:
U(r) = exp(—iﬁlr/ ) )

and 0(‘[) is the step function defined by

ifr>0

1
0(r) = 3
2 {o if 7<0 ©

First, observe that for T > 0, Eq.(1) leads to the

differential equation for the Feynman propagator:

. 0 A A
i EK(xb,xa;r):<xb|Hexp[—iHrj x,) )

By using the general relation between operators

in the Heisenberg and Schrddinger pictures,

A~

OH (t) — eil:lt/ Ose—il:lt/ (5)

it is not difficult to show that if |x> is an eigen-

vector of the operator X with eigenvalue X, then it is also

true that
X(t)|x,1) = x|x,1) (®)
where
X (@) =™ Xe ™ (7)

Calculation of the propagator for a simple harmonic oscillator coupled to

a constant electric field via Schwinger’s method

and |x, l‘> is defined as
|x, t> e |x> (8)

Using this notation, the Feynman propagator can

be written as:

K(x,,x,;7)=(x,,7|x,,0) 9)

where
)2'(2')|xb,r> =X, |xb,r>

(10a)

)A((O)|xa,0>:xa

x,,0) (10b)

The differential equation for the Feynman

propagator, Eq.(4), takes the form

x,,0)=(x,,7|H|x,,0) (z>0) (1)

. 0
1 E(Xb,f

The form of Eq. (11) is very suggestive and is
the starting point for the very elegant operator method
introduced by Schwinger. The main idea is to calculate
the matrix element on the right-hand side of Eq. (11) by
writing H in terms of the operators X(t) and X(0),
appropriately ordered. Schwinger's method can be

summarized by the following steps:

(i) Solve the Heisenberg equations for the

operators X (t) and 2(T), which are given by:
. 0 & 5 A .0 - .
lhaX(t) = [X(z),H],zhaP(t) =[P(t), H](12)

Equations (12) follow directly from Eq. (5).

(i) Use the solutions obtained in step (1) to
rewrite the Hamiltonian operator H as a function of the
operators X (0) and X(t) ordered in such a way that
in each term of I:[ the operator )2'(1:) must appear on
the left-hand side, while the operator X' (0) must appear

on the right-hand side. This ordering can be done easily
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with the help of the commutator [ X(0), X(1)] (see
Eq. (25)). We shall refer to the Hamiltonian operator
written in this way as the ordered Hamiltonian operator
[—?md()?('c), X(0)). After this ordering, the matrix

element on the right-hand side of Eq. (11) can be readily

evaluated:
(x,,T H xa,0>:<xb,z'|l:10rd(f((f),f((0)) x,,0)
13
EH(xb,xa;T)<xb,r xa,0> )

where we have defined the function H. The
latter is a c-number and not an operator. If we substitute

this result in Eq. (11) and integrate over T, we obtain:

i
(x,,7 xa,0>:C(xb,xa)exp(——J‘Tdr’
(14)
xH (x,,%,;7"))
where C(x,,x ) is an arbitrary integration
constant.

(iii)The last step is devoted to the calculation of
C(x,,x ). Its dependence on X, and X can be determined

by imposing the following conditions:

(xb,r|f’(r)|xa,0>=—i ai<xb,r xa,0> (15a)

b

. 0
xa,0>:+l §<xb,z'

a

(x,,7| P(0)

X,,0)  (15p)

These equations come from the definitions in
Eq. (10) together with the assumption that the usual

commutation relations hold at any time:
[X@). P@)]=[X(©0)PO)]=i  (16)

After using Eq. (15), there is still a multiplicative
factor to be determined in C(x,,x ). This can be done

simply by imposing the propagator initial condition:

lim (x,,7

70"

x,,0)=6(x, —x,) (17)
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Derivation of the propagator

We start the calculation of the propagator for a
simple harmonic oscillator coupled to a constant electric
field by using the Schwinger method. The Hamiltonian

operator of this system can be written as

A2
qoP (T)Jr%ma,z)}z(f)_qu((r) (18)

where m is the mass of the particle, @ is
natural frequency of oscillation, g is an electric charged,
and FE is an electric field. We rewrite Eq. (18) as the

time-independent Hamiltonian operator, it reads

A

A2
A=O L 220)= gER(0) (19)
2m 2

despite the fact that the operator and are explicitly
time dependent. It is matter of choice whether to work with
the Hamiltonian operator given by Eq.(18) or by Eq.(19).

For simplicity, we choose the latter.

As stated in step (i), we start by writing down

the corresponding Heisenberg equations:

i j((t) — it) (20a)
dt m

d ~ 2 ~

—P(t)=—-mw" X(t)+qE (20Db)

dt

whose solutions permit us to write for 7 = 7 that

X (1)=X(0)cos o P(O)sin OT— 2q€ sin’ 22 (21)
mao mw 2

For later convenience, we also write the

corresponding expression for (7):

13(2') =—mwX (0)sin w7 + ﬁ(O) COs T

E .
+ L sinwr

w

(22)

To complete step (i) we need to rewrite P(0)
in terms of X'(t) and X (0), which can be done directly
from Eq.(21):



Vol 43. No 4, July-August 2024 Calculation of the propagator for a simple harmonic oscillator coupled to
a constant electric field via Schwinger’s method
2qF . ot
P(O)— [X (7)-X (0)cos 07— L2sm2—] (23) H(x,.x,:7) = {7 ],.0)
T mao 2 <x,,,f xa.0>
2
. . . . :ﬂ[ ( x;+x )cscza)erx,,xu cotwrescor  (28)
If we substitute this result into Eq. (19), we obtain 2
4¢°E? ) 4qEx, . ,or
+—sln CSC aT— sin CSC T
2 me* 2 me 2
] mao 4qEx, ot )
H=——7— [X (T) + X (0) COS T —qiz[’sin2 ——csc? a)f] ——cotwr
2sin’ ot mae 2 2
- X(O)X(r) COS T — )A((T))A((O) coswt
A By using Eq. (14), we can express the propagator
+————coswrsin’ — in the following form:
me 2 (24)

49EX (1) . 44°E* .
—q—z(r)sm2 or %sm“(a)r/Z)]
mao m’w

+ % mw* X *(0) - gEX (0)

Note that the third term in Eq. (24) is not written

in the appropriate order. By using the commutation

relation
.. N P(0) .
[X(O),X(T)]Z[X(O), X(0)cos wr+ sin ot
mao
_24E sin® (ez / 2)] (25)
ma*
- sin ot
mao

It follows immediately that
X(0)X(r) = X(1)X(0) +~—sin o7 (26)
mao

If we substitute Eq. (26) into Eq. (24), we obtain

the ordered Hamiltonian:

1 m—[X (DX 2(0)2X(2)X(0)coswr
2sin’wr
202 >
4q E sin® or 4qEX2(O) sin’ ot o
m* o' 2 mao 2
B 4qEX (7)

~—sin’ (w7 / 2)] —iTwcot boYs
mo

Once the Hamiltonian operator is appropriately
ordered, we can find the function H(x,,x ;7) directly from
its definition, given by Eq. (13):

x,,0)= C(xb,xa)exp{—irdr’[ no_

<xb,z'

x( (xb2 + xf)csc2 wt'—2x,x, cot wr' csc ')
(29)
44°E* . , ot 4gE(x, +x
qz —sin* —csc? a)r'—w
m-@ 2 mae

+

’

. 2T , L, 1w ,
x sin TCSC T —TCota)r ]}

The integration overz'in Eq. (29) can be readily

evaluated:
C(x,,x,) imw o
<xb’T >_ ’Sin or pr{ 2 Sin or ( (xb+xa)

iqE
2 wsinot (30)
qE )sin’ @r
2

X COSWT2—X,X, )+

2

X[4(xb+xa_ma)

+ @ sinwt ]}
mw

where C(x,,x ) is an arbitrary integration constant

to be determined according to step (iii).

The determination of C(x,,x ) is done with the
aid of Egs. (15) and (17). However, we need to rewrite
the operators P(0) and P(t) in terms of the operators
X (1) and X (0), appropriately ordered. For P(0) this task
has already been done (see Eq.(23)), and for 2(T) we
find after substituting Eq. (23) into Eq. (22):

P(r) = morcot wr[ X (r) - X (0)cos o7]

5 . E .
—mwX (0)sin w7 + 9= sin wr
@

31

Then, by inserting Egs. (31) and (30) into Eq.
(15a) it is not difficult to show that:
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0C(xx%,) _, )
ox,

Analogously, by substituting Eqgs.(23) and (30) into
Eq. (15b) we have that OC(x,,x )/0x_ = (). The last two
relations tell us that C(xb,xa) = (C, thatis, it is a constant
independent ofxb and x . In order to determine the value
of C, we first take the limit 7 — 0* on (x,, | x,0). If we
use Eq.(30), we find that

Tli_)rg(xb, |x,, 0>:Tlggl\/g_r exp [;—mr(xb_xa )]
(33)
T
=C nfclo 5(x,—x,)

If we compare this result with the initial condition,

Eq. (17), we obtain C = ~/m / 277i . By substituting

this result for C into Eq.(30), we obtain the desired

Feynman propagator for the harmonic oscillator:

K(xb,xa;r)=<xb,r xa,0>

- / mo exp{ ime [ (x; +x2)cosr
2ihisin ot Qhsinwrt S ¢
) 34)
iqgE gt | . ,or (
-2x, X 4|4 X, +X — sin“—
b ”]+2 ®sin @7 (%, ma)2)
+ q—ETsin a)r]}
me

Conclusions

We found the Feynman propagator of a simple
harmonic oscillator connected to a constant electric field
using Schwinger's method, which is usually used in
quantum field theory but also works well for non-relativistic
quantum mechanical problems, even though they don’t
happen very often. Schwinger's method is based on the
solution of the Heisenberg equations for the position
and canonical momentum operators. Such solutions are
then used to write the ordered Hamiltonian operator of
the position operators X’ (O) and )? (t). The utilization
of proper operator ordering, along with subsidiary and
initial conditions, results in the yield of such a propagator.
We found that the propagator obtained is consistent with

the one obtained using the Feynman path integral in the
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work of Poon and Mufioz (1999). Schwinger's method
is known for its strong focus on operator formalism
and its applications in quantum field theory as well as
non-relativistic quantum theory, whereas the path integral
method is renowned for its probabilistic interpretation
and its broad applicability to various quantum
systems, making it an extremely powerful tool in both
theoretical and computational physics. We hope that this
pedagogical paper may be useful for undergraduate as
well as graduate students and that a simple harmonic
oscillator coupled to a constant electric field may enlarge
the small list of non-relativistic problems that have been

treated by such a powerful and elegant method.
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