้ลำดับใหม่ที่สอดคล้องกับลำดับ k-ฟิโบนักชี

Some novel sequences related to k-Fibonacci sequences

พงษ์พันธ์ มุขวะชิ¹, เพ็ญศิริ สมพงษ์², สุพรรณี สมพงษ์³ และ ไกรลิขิต ลาดปะละ⁴* Phongphan Mukwachi¹, Pensiri Sompong², Supunnee Sompong³ and Krailikhit Latpala⁴*

Received: 13 March 2023 ; Revised: 18 May 2023 ; Accepted: 27 June 2023

บทคัดย่อ

งานวิจัยนี้เราได้นำเสนอสามลำดับรูปแบบใหม่ของ γ, α, และ β, ที่มีส่วนเกี่ยวข้องกันผ่านความสัมพันธ์เวียนเกิด และเราได้ สังเกตถึงความสัมพันธ์ของลำดับทั้งสามนี้สามารถแสดงให้อยู่ในรูปของลำดับ *k-*ฟีโบนักซี เพื่อพิสูจน์ความสัมพันธ์นี้เราได้นำ หลักอุปนัยเชิงคณิตศาสตร์ มาใช้สำหรับแสดงความถูกต้องของทฤษฎี และแสดงผลลัพธ์ที่ได้จากการศึกษาในงานนี้

คำสำคัญ: ลำดับ *k-*ฟีโบนักชี, ความสัมพันธ์เวียนเกิด, อุปนัยเชิงคณิตศาสตร์

Abstract

In this research, we introduce three novel sequences of γ_n , α_n and β_n . These sequences are related to each other through the recurrence relation, and we have observed that their relationship can be expressed using *k*-Fibonacci sequences. To prove this relationship, we used mathematical induction. We have shown the validity of our theorem, and the results are presented in this study.

Keywords: k-Fibonacci sequences, recurrence relation, mathematical induction

¹ อาจารย์ ภาควิชาคณิตศาสตร์และสถิติ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสกลนคร สกลนคร 47000

² ผู้ช่วยศาสตราจารย์ ภาควิชาวิทยาศาสตร์ทั่วไป คณะวิทยาศาสตร์และวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตเฉลิมพระเกียรติ สกลนคร 47000

³ ผู้ช่วยศาสตราจารย์ ภาควิชาคณิตศาสตร์และสถิติ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสกลนคร สกลนคร 47000

⁴ อ[้]าจารย์ ภาควิชาคณิตศาสตร์ คณะครุศาสตร์ มหาวิทยาลัยราชภัฏสกลนคร สกลนคร 47000

¹ Lecturer, Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand

² Assistant Professor, Department of General Science, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000 Thailand

³ Assistant Professor, Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand

⁴ Lecturer, Department of Mathematics, Faculty of Education, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand ⁵ Corresponding author: Krailikhit@snru.ac.th

Introduction

For any integer number $k \ge 1$, the *n* th *k*-Fibonacci sequence, denoted as $\{F_{k\cdot n}\}_{n=0}^{\infty}$, is defined by (Falcon & Plaza, 2007) as a recursive sequence as follows:

$$F_{k,n+1} = kF_{k,n} + F_{k,n-1}$$

where $F_{k,0} = 0$ and $F_{k,1} = 1$. The first 8 members of *k*-Fibonacci sequences are shown below:

 $0, 1, k, k^2 + 1, ..., k^3 + 2k, k^4 + 3k^2 + 1, k^5 + 4k^3 + 3k, k^6 + 5k^4 + 6k^2 + 1.$

(Atanassov, 2018) studied two new combined 3-Fibonacci sequences. Let a, b, c, d be arbitrary real numbers and $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence. The first set of sequences has the form for $n \ge 0$,

$$\alpha_{n+2} = \gamma_{n+1} + \beta_{n+1},$$

$$\beta_{n+2} = \gamma_{n+1} + \alpha_{n+1},$$

$$\gamma_{n+2} = \gamma_{n+1} + \gamma_{n}.$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\gamma_1 = d$. From these sequences and for each natural number $n \ge 1$ the result are the following,

$$\begin{split} \alpha_{2n+1} &= b + F_{2n-1}a + (F_{2n}-1)d, \\ \alpha_{2n} &= a + F_{2n}c + (F_{2n+1}-1)d, \\ \beta_{2n-1} &= a + F_{2n-1}c + (F_{2n}+1)d, \\ \beta_{2n} &= b + F_{2n}c + (F_{2n+1}-1)d, \\ \gamma_{n+2} &= F_{n+1}c + F_{n+2}d. \end{split}$$

The second set of sequences has the form for $n \ge 0$,

$$\alpha_{n+1} = \alpha_{n+1} + \alpha_n,$$

$$\beta_{n+1} = \alpha_{n+1} + \gamma_n,$$

$$\gamma_{n+1} = \alpha_{n+1} + \beta_n.$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\alpha_1 = d$. From these sequences and for each natural number $n \ge 1$ the result are the following,

$$\begin{aligned} \alpha_n &= F_{n-1}c + F_n d, \\ \beta_{2n-1} &= (F_{2n}-1)a + b + (F_{2n+1}-1)d \\ \beta_{2n} &= (F_{2n+1}-1)a + c + (F_{2n+2}-1)a \end{aligned}$$

$$\begin{split} \gamma_{2n-l} &= (F_{2n}-1)a + c + (F_{2n+l}-1)d, \\ \gamma_{2n} &= (F_{2n+l}-1)a + b + (F_{2n+2}-1)d. \end{split}$$

In the same year, he studied two additional new combined 3-Fibonacci sequences part 2. Let *a*, *b*, *c* be arbitrary real numbers and $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence. The first set of sequences has the form for $n \ge 0$,

$$\begin{aligned} \alpha_{n+1} &= \beta_n + \gamma_n, \\ \beta_{n+1} &= \alpha_n + \gamma_n, \\ \gamma_{n+1} &= \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \gamma_n, \end{aligned}$$

where $\alpha_0 = 2a$, $\beta_0 = 2b$, $\gamma_0 = c$. From these sequences and for each natural number $n \ge 1$ the result are the following.

$$\begin{split} &\alpha_n = (F_{2n \cdot l} + (-1)^n)a + (F_{2n \cdot l} - (-1)^n)b + F_{2n}c, \\ &\beta_n = (F_{2n \cdot l} - (-1)^n)a + (F_{2n \cdot l} + (-1)^n)b + F_{2n}c, \\ &\gamma_n = F_{2n}a + F_{2n}b + F_{2n \cdot l}c. \end{split}$$

The second set of sequences has the form for $n \ge 0$,

$$\alpha_{n+1} = \alpha_n + \frac{\beta_n + \gamma_n}{2},$$

$$\beta_{n+1} = \alpha_{n+1} + \gamma_n,$$

$$\gamma_{n+1} = \alpha_{n+1} + \beta_n.$$

where $\alpha_0 = a, \beta_0 = 2b, \gamma_0 = 2c$. From these sequences and for each natural number $n \ge 1$ the result are the following.

$$\begin{split} &\alpha_n = F_{2n-1}a + F_{2n}b + F_{2n}c, \\ &\beta_n = F_{2n}a + (F_{2n+1} + (-1)^n)b + (F_{2n+1} - (-1)^n)c, \\ &\gamma_n = F_{2n}a + (F_{2n+1} - (-1)^n)b + (F_{2n+1} + (-1)^n)c. \end{split}$$

(Nubpetchploy & Pakapongpun, 2021) generated three combined sequences related to Jacobsthal sequences. Let *a*, *b*, *c*, *d* be arbitrary real numbers and J_n be the Jacobethal sequences. The first set of sequences has the form for $n \ge 0$,

$$\gamma_{n+2} = \gamma_{n+1} + 2\gamma_n,$$

$$\alpha_{n+1} = \gamma_{n+1} + 2\beta_n,$$

$$\beta_{n+1} = \gamma_{n+1} + 2\alpha_n,$$

where $a_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\gamma_1 = d$. From these sequences and for each natural number $n \ge 1$ the result are the following.

$$\begin{split} \gamma_n &= 2J_{n-l}c + J_nd, \\ \alpha_n &= 2\alpha_{n-l} + (J_n + (-1)^n)c + j_nd + (-2)^n(a-b), \\ \beta_n &= 2\beta_{n-l} + (J_n + (-1)^n)c + j_nd - (-2)^n(a-b). \end{split}$$

The second set of sequences has the form for $n \ge 0$,

$$\begin{aligned} \gamma_{n+2} &= \gamma_{n+1} + 2\gamma_n, \\ \alpha_{n+1} &= \gamma_n + 2\beta_n, \\ \beta_{n+1} &= \gamma_n + 2\alpha_n. \end{aligned}$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\gamma_1 = d$. From these sequences and for each natural number $n \ge 1$ the result are the following.

$$\begin{split} \gamma_n &= 2J_{n-l}c + J_n d, \\ \alpha_n &= 2\alpha_{n-l} + (J_{n-l} + (-1)^{n-l})c + j_{n-l}d + (-2)^n (a-b), \\ \beta_n &= 2\beta_{n-l} + (J_{n-l} + (-1)^{n-l})c + j_{n-l}d - (-2)^n (a-b). \end{split}$$

The third set of sequences has the form for $n \ge 0$,

$$\begin{split} \gamma_{n+1} &= \frac{\alpha_{n+1} + \beta_{n+1}}{2} + 2\gamma_n, \\ \alpha_{n+1} &= \gamma_n + 2\beta_n, \\ \beta_{n+1} &= \gamma_n + 2\alpha_n. \end{split}$$

where $\alpha_0 = 2a$, $\beta_0 = 2b$, $\gamma_0 = c$. From these sequences and for each natural number $n \ge 1$ the result are the following.

$$\begin{split} \gamma_{n-1} &= (J_{2n-1}^{-}-1)(a+b) + J_{2n-1}c, \\ \alpha_n &= (J_{n+1}^2 - J_n^2 + 1)(a+b) + (-1)^n J_n a + (-1)^{n+1} (2J_{n+1} + J_n)b + J_{2n}c, \\ \beta_n &= (J_{n+1}^2 - J_n^2 + 1)(a+b) + (-1)^n J_n b + (-1)^{n+1} (2J_{n+1} + J_n)a + J_{2n}c. \end{split}$$

(Atanassov, 2022) introduce on two new combined 3-Fibonacci sequences. Let *a*, *b*, *c*, *d*, *e* be arbitrary real numbers and $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence. The first set of sequences has the form for $n \ge 1$,

$$\begin{aligned} \alpha_{n+1} &= \alpha_n + \alpha_{n-1}, \\ \beta_{n+1} &= \beta_n + \beta_{n-1}, \\ \gamma_{n+1} &= \frac{\alpha_n + \beta_n}{2} + \gamma_n. \end{aligned}$$

where $\alpha_0 = 2a$, $\beta_0 = 2b$, $\gamma_0 = c$, $\alpha_1 = 2d$, $\beta_1 = 2e$. From these sequences and for each natural number $n \ge l$ the result are the following.

$$\begin{aligned} \alpha_n &= 2F_{n-1}a + 2F_nd, \\ \beta_n &= 2F_{n-1}b + 2F_ne, \\ \gamma_n &= F_na + F_nb + c + (F_{n+1}-1)d + (F_{n+1}-1)e. \end{aligned}$$

The second set of sequences has the form for $n \ge l$,

$$\begin{split} \alpha_{n+l} &= \alpha_n + \alpha_{n-l}, \\ \beta_{n+l} &= \beta_n + \beta_{n-l}, \\ \gamma_{n+l} &= \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \gamma_n. \end{split}$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\alpha_1 = 2d$, $\beta_1 = 2e$. From these sequences and for each natural number $n \ge l$ the result are the following.

$$\begin{aligned} \alpha_n &= 2F_{n-1}a + 2F_nd, \\ \beta_n &= 2F_{n-1}b + 2F_ne, \\ \gamma_n &= F_na + F_nb + c + (F_{n+1}-1)d + (F_{n+1}-1)e. \end{aligned}$$

(Pakapongpun & Kongson, 2022) introduced three combined sequences related to *k*-Fibonacci sequences. Let *a*, *b*, *c*, *d* be arbitrary real numbers and $\{F_{k,n}\}_{n=0}^{\infty}$ be the *k*-Fibonacci sequence. The first set of sequences has the form for $n \ge 0$,

$$\begin{split} \gamma_{n+2} &= k\gamma_{n+1} + \gamma_{n}, \\ \alpha_{n+1} &= k\gamma_n + \beta_n, \\ \beta_{n+1} &= k\gamma_n + \alpha_n. \end{split}$$

where $a_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\gamma_1 = d$. From these sequences the result are the following theorem 1.1.

Theorem 1.1. For any positive integer k and n,

(a)
$$\gamma_n = F_{k,n}d + F_{k,n-l}c$$
,

(b)
$$\alpha_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-1} + F_{k,2n-2} + (F_{k,2} - 1))$$

 $c + a,$

(c)
$$\beta_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-1} + F_{k,2n-2} + (F_{k,2} - 1))c + b,$$

(d)
$$\alpha_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)d + (F_{k,2n-2} + F_{k,2n-3} + (F_{k,2n-3} + 1)c + b)$$

(e)
$$\beta_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)d + (F_{k,2n-2} + F_{k,2n-3} + (F_{k,2n-3} - 1)c + a)d$$

The second set of sequences has the form for $n \ge 0$,

$$\begin{split} \gamma_{n+2} &= k \gamma_{n+1} + \gamma_n, \\ \alpha_{n+1} &= k \gamma_{n+1} + \beta_n, \\ \beta_{n+1} &= k \gamma_{n+1} + \alpha_n. \end{split}$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\gamma_1 = d$. From these sequences the result are the following theorem 1.2.

Theorem 1.2. For any positive integer k and n,

(a)
$$\gamma_n = F_{k,n}d + F_{k,n-l}c,$$

(b)
$$\alpha_{2n} = (F_{k,2n+1} + F_{k,2n} - 1)d + (F_{k,2n} + F_{k,2n-1} - 1)c + a,$$

(c)
$$\beta_{2n} = (F_{k,2n+1} + F_{k,2n} - 1)d + (F_{k,2n} + F_{k,2n-1} - 1)c + b$$

(d)
$$a_{2n-1} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-1} + F_{k,2n-2} - 1)c + b,$$

(e)
$$\beta_{2n-1} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-2} + F_{k,2n-3} + (F_{k,2} - 1))c + a.$$

The third set of sequences has the form for $n \ge n$

$$\begin{split} \gamma_{n+1} &= k\gamma_n + \frac{\alpha_n + \beta_n}{2} \\ \alpha_{n+1} &= k\gamma_n + \beta_n, \\ \beta_{n+1} &= k\gamma_n + \alpha_n. \end{split}$$

0,

where $\alpha_0 = 2a$, $\beta_0 = 2b$, $\gamma_0 = c$. From these sequences, the result are the following theorem 1.3.

Theorem 1.3. For any positive integer k and n,

(a)
$$\gamma_{n+1} = \gamma_n (F_{k,2} + F_{k-1}) = \gamma_1 (F_{k,2} + F_{k-1})^n$$

(b)
$$\alpha_{2n} = \gamma_1 (F_{k,2} + F_{k-1})^{2n-1} + a - b,$$

(c)
$$\alpha_{2n-1} = \gamma_1 (F_{k,2} + F_{k-1})^{2n-2} + b - a.$$

In this paper, we introduce a new three set of combined sequences which are more general context related to k-Fibonacci sequences.

Main Results

We applied those three sets of sequences from (Pakapongpun & Kongson, 2022) work as follows. Let *a*, *b*, *c*, *d* and *s* be arbitrary real numbers with $s \neq 0$. The first set of sequences has the form for $n \ge 0$,

$$\begin{split} \gamma_{n+2} &= k \gamma_{n+1} + \gamma_n, \\ \alpha_{n+1} &= k s \gamma_{n+1} + \beta_n, \\ \beta_{n+1} &= k s \gamma_{n+1} + \alpha_n. \end{split}$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$ and $\gamma_1 = d$.

From these sequences, we generate the first few members of the sequences $\{\gamma_n\}_{n=0}^{\infty}, \{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ with respect to *n* represented in Table 1, Table 2 and Table 3 respectively.

Table 1This table shows first 8 members of $\{\gamma_n\}_{n=0}^{\infty}$ from the first set of sequences.

n	$\{\gamma_n\}_{n=0}^{\infty}$
0	С
1	d
2	kd + c
3	$k^2d + kc + d$
4	$k^3d + k^2c + c + 2kd + c$
5	$k^4d + k^3c + 3k^2d + 2kc + d$
6	$k^{5}d + k^{4}c + k^{3}d + 3k^{2}c + 3kd + c$
7	$k^{6}d + k^{5}c + 5k^{4}d + 4k^{3}c + 6k^{2}d + 3kc + d$

This table shows first 8 members of $\{\alpha_n\}_{n=0}^{\infty}$ Table 2 from the first set of sequences.

п	$\{\alpha_n\}_{n=0}^{\infty}$
0	a
1	ksc + b
2	ks(c+d) + a
3	$k^2sd + ks(2c+d) + b$
4	$k^3sd + k^2s(c+d) + ks(2c+2d) + a$
5	$k^{4}sd + k^{3}s(c+d) + k^{2}s(c+3d) + ks(3c+2d) + b$
6	$k^{5}sd + k^{4}s(c+d) + k^{3}s(c+4d) + k^{2}s(3c+3d) +$
	ks(3c+3d) + a
7	$k^{6}sd + k^{5}s(c+d) + k^{4}s(c+5d) + k^{3}s(4c+4d) +$
1	$k^2s(3c+6d) + ks(4c+3d) + b$

This table shows first 8 members of $\{\beta_n\}_{n=0}^{\infty}$ Table 3 from the first set of sequences.

п	$\{\beta_n\}_{n=0}^{\infty}$
0	b
1	ksc + a
2	ks(c+d) + b
3	$k^2sd + ks(2c+d) + a$
4	$k^3sd + k^2s(c+d) + ks(2c+2d) + b$
5	$k^4sd + k^3s(c+d) + k^2s(c+3d) + ks(3c+2d) + a$
6	$k^{5}sd + k^{4}s(c+d) + k^{3}s(c+4d) + k^{2}s(3c+3d) +$
	ks(3c+3d) + b
7	$k^{6}sd + k^{5}s(c+d) + k^{4}s(c+5d) + k^{3}s(4c+4d) +$
	$k^2s(3c+6d) + ks(4c+3d) + a$

Theorem 2.1. For any positive integer k and n,

(a)
$$\gamma_n = F_{k,n}d + F_{k,n-l}c$$
,

(b)
$$\alpha_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)sd + (F_{k,2n-1} + F_{k,2n-2} + F_{k,2n} - 1)$$

sc + a,

- $\beta_{2n} = (F_{k,2n} + F_{k,2n-1} 1)sd + (F_{k,2n-1} + F_{k,2n-2} +$ *(c)* -1)sc + b.
- $\alpha_{_{2n \cdot I}} = (F_{_{k,2n \cdot I}} + F_{_{k,2n \cdot 2}} I)sd + (F_{_{k,2n \cdot 2}} + F_{_{k,2n \cdot 3}} + F_{$ (d)-1)sc + b, for $n \ge 2$,
- $\beta_{2n \cdot l} = (F_{k, 2n \cdot l} + F_{k, 2n \cdot 2} l)sd + (F_{k, 2n \cdot 2} + F_{k, 2n \cdot 3} + F_{k,$ (e) -1)sc + a, for $n \ge 2$.

Proof. we will prove (a) by mathematical induction.

Let P(n) be a statement $\gamma_n = F_{kn}d + F_{kn-l}c$ for n ≥ 1 , we will show that P(1) is true.

Since $F_{k,l}d + F_{k,0}c = (1)d + (0)c = d = \gamma_{l}$, then P(1) is true. Let $m \ge 1$, assume that $P(1), P(2), \dots, P(m-1)$, P(m) are true that is, $\gamma_n = F_{k,i}d + F_{k,i-l}c$, where $l \le i \le m$.

We will show that P(m+1) is true.

consider,

$$\begin{split} \gamma_{m+1} &= k \gamma_m + \gamma_{m-1} \\ &= k (F_{k,m} d + F_{k,m-1} c) + F_{k,m-1} d + F_{k,m-2} c \\ &= k (F_{k,m} + F_{k,m-1}) d + (k F_{k,m-1} + F_{k,m-2}) c \\ \gamma_{m+1} &= F_{k,m+1} d + F_{k,m} c. \end{split}$$

Then P(m+1) is true.

By mathematical induction, the statement P(n)is true for all $n \ge 1$.

Next, we will prove (b) by mathematical induction.

Let P(n) be a statement,

$$\begin{aligned} \alpha_{2n} &= (F_{n-2n} + F_{k,2n-1} - 1)sd \\ &+ (F_{k,2n-1} + F_{k,2n-2} + F_{k,2} - 1)sc + a, for \ n \geq 1. \end{aligned}$$

We will show that P(1) is true.

Now consider,

$$\begin{split} (F_{k,2(n)} + F_{k,2(1)-1} - 1)sd \\ &+ (F_{k,2(1)-1} + F_{k,2(1)-2} + F_{k,2} - 1)sc + a \\ &= (F_{k,2} + F_{k,1} - 1)sd + (F_{k,1} + F_{k,0} + F_{k,2} - 1)sc + a \\ &= (k+1-1)sd + (1+0+k-1)sc + a \\ &= ksd + ksc + a \\ &= ks(c+d) + a = \alpha_{2(1)}. \end{split}$$

Then P(1) is true.

Let $m \ge 1$, assume that P(m) is true that is,

$$\begin{aligned} \alpha_{2n} &= (F_{k\cdot 2m} + F_{k,2n\cdot 1} - 1)sd \\ &+ (F_{k,2m\cdot 1} + F_{k,2m\cdot 2} + F_{k,2} - 1)sc + a. \end{aligned}$$

We will show that P(m+1) is true.

Consider,

$$\begin{split} \alpha_{2m+2} &= ks\gamma_{2m+1} + \beta_{2m+1} \\ &= ks(F_{k,2m+1}d + F_{k,2m}c) + ks\gamma_{2m} + \alpha_{2m} \\ &= ks(F_{k,2m+1}d + F_{k,2m}c) + ks(F_{k,2m}d + F_{k,2m-1}c) \\ &+ (F_{k,2m} + F_{k,2m-1} - 1)sd + (F_{k,2m-1} + F_{k,2m-2} + F_{k,2} - 1)sc + a \\ &= [(kF_{k,2m+1} + F_{k,2m})sd + (kF_{k,2m} + F_{k,2m-1}) \\ sd - sd] + [(kF_{k,2m} + F_{k,2m-1})sc + (kF_{k,2m-1} + F_{k,2m-2})sc + F_{k,2}sc - sc] + a \\ &= (F_{k,2m+2} + F_{k,2m+1} - 1)sd + (F_{k,2m+1} + F_{k,2m} + F_{k,2} - 1)sc + a \\ &\alpha_{2(m+1)} = (F_{k,2(m+1)} + F_{k,2(m+1)-1} - 1)sd \\ &+ (F_{k,2(m+1)-1} + F_{k,2(m+1)-2} + F_{k,2} - 1)sc + a. \end{split}$$

Then P(m+1) is true.

By mathematical induction the statement P(n) is true for all n > 1.

The proof of (c) is similar to (b).

To prove equation (d) for $n \ge 2$, using (a) and (c) we have,

$$\begin{split} \alpha_{2n-1} &= ks\gamma_{2n-2} + \beta_{2n-2} \\ &= ks(F_{k,2n-2}d + F_{k,2n-3}c) + (F_{k,2n-2} + F_{k,2n-3} - 1)sd \\ &+ (F_{k,2n-3} + F_{k,2n-4} + F_{k,2} - 1)sc + b \\ &= [(kF_{k,2n-2} + F_{k,2n-3})sd + (F_{k,2n-2}sd - sd] + \\ [(kF_{k,2n-3} + F_{k,2n-4})sc + (F_{k,2n-3}sc + F_{k,2}sc - sc] \\ &+ b \\ &= (F_{k,2n-1} + F_{k,2n-2} - 1)sd + (F_{k,2n-2} + F_{k,2n-3} + F_{k,2} - 1)sc + b, \end{split}$$

then

$$\begin{aligned} \alpha_{2n-1} &= (F_{k,2n-1} + F_{k,2n-2} - 1)sd \\ &+ (F_{k,2n-2} + F_{k,2n-3} + F_{k,2} - 1)sc + b. \end{aligned}$$

is true.

By (a), (b), and the proof is similar to (d), then we have (e).

The proof is complete.

Next, we present the second sequences.

The second set of sequences has the form for $n \ge 0$,

$$\begin{split} \gamma_{n+2} &= k \gamma_{n+1} + \gamma_n, \\ \alpha_{n+1} &= k \gamma_{n+1} + \beta_n, \\ \beta_{n+1} &= k \gamma_{n+1} + \alpha_n. \end{split}$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$ and $\gamma_1 = d$.

From these sequences, we generate the first 7 members of the sequences $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ with respect to *n* represented in Table 4, and Table 5 respectively.

Table 4	This table shows first 7 members of $\{lpha_n\}_{n=0}^{\infty}$
	from the second set of sequences.

n	$\{\alpha_n\}_{n=0}^{\infty}$
0	a
1	ksd + a
2	$k^2sd + ks(c+d) + a$
3	$k^3sd + k^2s(c+d) + ks(c+2d) + b$
4	$k^{4}sd + k^{3}s(c+d) + k^{2}s(c+3d) + ks(2c+2d) + a$
5	$k^{5}sd + k^{4}s(c+d) + k^{3}s(c+4d) + k^{2}s(3c+3d) + ks(2c+3d) + b$
6	$\frac{k^{5}s(2c+5d) + b}{k^{6}sd + k^{5}s(c+d) + k^{4}s(c+5d) + k^{3}s(4c+4d) + b}$
	$k^{2}s(3c+6d) + k^{2}s(2c+3d) + k^{2}s(4c+4d) + k^{2}s(3c+6d) + ks(3c+3d) + a$

Table 5This table shows first 7 members of $\{\beta_n\}_{n=0}^{\infty}$ from the second set of sequences.

n	$\{\boldsymbol{\beta}_n\}_{n=0}^{\infty}$
0	b
1	ksd + a
2	$k^2sd + ks(c+d) + b$
3	$k^3sd + k^2s(c+d) + ks(c+2d) + a$
4	$k^{4}sd + k^{3}s(c+d) + k^{2}s(c+3d) + ks(3c+2d) + b$
5	$k^{5}sd + k^{4}s(c+d) + k^{3}s(c+4d) + k^{2}s(3c+3d) +$
5	ks(2c+3d) + a
6	$k^{6}sd + k^{5}s(c+d) + k^{4}s(c+5d) + k^{3}s(4c+4d) +$
0	$k^2s(3c+6d) + ks(3c+3d) + b$

Theorem 2.2. For any positive integer k and n,

(a)
$$\gamma_n = F_{k,n}d + F_{k,n-l}c,$$

- $\alpha_{2n} = (F_{k,2n+1} + F_{k,2n} 1)sd + (F_{k,2n} + F_{k,2n-1} 1)sc +$ *(b)*
- $\beta_{2n} = (F_{k,2n+1} + F_{k,2n} 1)sd + (F_{k,2n} + F_{k,2n-1} 1)sc +$ (*c*)
- $\alpha_{_{2n \cdot l}} = (F_{_{k,2n}} + F_{_{k,2n \cdot l}} 1)sd + (F_{_{k,2n \cdot l}} + F_{_{k,2n \cdot 2}} 1)sc$ (d)+b,
- $\beta_{2n-1} = (F_{k,2n} + F_{k,2n-1} 1)sd + (F_{k,2n-1} + F_{k,2n-2} 1)sc$ (*e*) + a.

Proof. The proofs are similar to theorem 2.1.

Finally, the last sequences in our work.

The third set of sequences has the form for

$$\gamma_{n+1} = k\gamma_n + \frac{\alpha_n + \beta_n}{2s}$$
$$\alpha_{n+1} = ks\gamma_n + \beta_n,$$
$$\beta_{n+1} = ks\gamma_n + \alpha_n.$$

 $n \ge 0$,

where $\alpha_0 = 2as$, $\beta_0 = 2sb$ and $\gamma_0 = c$.

The first 7 members of the sequences $\{\gamma_n\}_{n=0}^{\infty}$, $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are show in Table 6, Table 7, and Table 8 respectively.

Table 6 This table shows first 7 members of $\{\gamma_n\}_{n=0}^{\infty}$ from the third set of sequences.

n	$\{\gamma_n\}_{n=0}^{\infty}$
0	С
1	kc + a + b
2	$k^2c + k(a+b+c) + a + b$
3	$k^{3}c + k^{2}(a+b+2c) + k(2a+2b+c) + a + b$
4	$k^4c + k^3(a+b+3c) + k^2(3a+3b+3c) +$
4	k(3c+3b+c) + a + b
5	$k^{5}c + k^{4}(a + b + 4c) + k^{3}(4c + 4b + 6c) +$
	$k^{2}(6a+6b+4c) + k(4a+4b+c) + a + b$
	$k^{6}c + k^{5}(a + b + 5c) + k^{4}(5a + 5b + 10c) +$
6	$k^3(10a\!+\!10b\!+\!10c) + k^2(10a\!+\!10b\!+\!5c) +$
	k(5a+5b+c) + a + b

Table 7 This table shows first 7 members of $\{\alpha_n\}_{n=0}^{\infty}$ from the third set of sequences.

n	$\{\alpha_n\}_{n=0}^{\infty}$
0	2as
1	ksc + 2bs
2	$k^2sc + ks(a+b+c) + 2as$
3	$k^{3}sc + k^{2}s(a+b+2c) + ks(2a+2b+c) + 2bs$
1	$k^4sc + k^3s(a+b+3c) + k^2s(3a+3b+3c) +$
4	ks(3a+3b+c) + 2as
5	$k^{5}sc + k^{4}s(a+b+4c) + k^{3}s(4c+4b+6c) +$
	$k^{2}s(6a+6b+4c) + ks(4a+4b+c) + 2bs$
6	$k^6sc + k^5s(a+b+5c) + k^4s(5a+5b+10c) +$
	$k^3s(10a\!+\!10b\!+\!10c)+k^2s(10a\!+\!10b\!+\!5c)+$
	ks(5a+5b+c) + 2as

This table shows first 7 members of $\{\beta_n\}_{n=0}^{\infty}$ Table 8 from the third set of sequences.

n	$\{\beta_n\}_{n=0}^{\infty}$
)	2bs
1	ksc + 2as
2	$k^2sc + ks(a+b+c) + 2bs$
3	$k^{3}sc + k^{2}s(a+b+2c) + ks(2a+2b+c) + 2as$
4	$k^4sc + k^3s(a+b+3c) + k^2s(3a+3b+3c) +$
	ks(3a+3b+c) + 2bs
5	$k^{5}sc + k^{4}s(a+b+4c) + k^{3}s(4c+4b+6c) +$
	$k^{2}s(6a+6b+4c) + ks(4a+4b+c) + 2as$
6	$k^{6}sc + k^{5}s(a+b+5c) + k^{4}s(5a+5b+10c) +$
	$k^3s(10a\!+\!10b\!+\!10c) + k^2s(10a\!+\!10b\!+\!5c) +$
	ks(5a+5b+c) + 2bs

Theorem 2.3. For any positive integer k and n,

(a)
$$\gamma_{n+1} = \gamma_n (F_{k,2} + F_{k,1}) = \gamma_1 (F_{k,2} + F_{k,1})^n,$$

(b) $\alpha_{2n} = \gamma_1 s (F_{k,2} + F_{k,1})^{2n-1} + as - bs,$
(c) $\beta_{2n} = \gamma_1 s (F_{k,2} + F_{k,1})^{2n-1} + bs - as,$
(d) $\alpha_{n-1} = \gamma_n s (F_{n-1} + F_{n-1})^{2n-2} + bs - as,$

(d)
$$\alpha_{2n-1} = \gamma_1 s (F_{k,2} + F_{k,1})^{2n-2} + bs - as,$$

 $\beta_{2n-1} = \gamma_1 s (F_{k,2} + F_{k,1})^{2n-2} + as - bs.$ (*e*)

Proof. To prove (a) we will show that $\gamma_{n+1} = \gamma_n(F_{k,2}+F_{k,1})$ since, $\gamma_{n+1} = k\gamma_n + \frac{\alpha_n + \beta_n}{2s}$ and we know that, $\frac{\alpha_n + \beta_n}{2s} = \frac{(ks\gamma_{n-1} + \beta_{n-1}) + (ks\gamma_{n-1} + \alpha_{n-1})}{2s}$ $= k\gamma_{n-1} + \frac{\alpha_{n-1} + \beta_{n-1}}{2s},$ so, we have $\gamma_{n+1} = k\gamma_n + k\gamma_{n-1} + \frac{\alpha_{n-1} + \beta_{n-1}}{2s}$ Since $\gamma_n = k\gamma_{n-1} + \frac{\alpha_{n-1} + \beta_{n-1}}{2s}$ we get that, $\gamma_{n+1} = k\gamma_n + \gamma_n$

$$= \gamma_n (k+1)$$

$$\gamma_{n+1} = \gamma_n (F_{k,2} + F_{k,1}).$$

Next, we will show that $\gamma_{n+1} = \gamma_n (F_{k,2} + F_{k,1})^n$.

Since
$$\gamma_n = \gamma_{n-l} (F_{k,2} + F_{k,l})$$

we have that,

$$\begin{split} \gamma_2 &= \gamma_n \, (F_{k,2} + F_{k,l}). \\ \gamma_3 &= \gamma_2 \, (F_{k,2} + F_{k,l}) = \gamma_l \, (F_{k,2} + F_{k,l})^2. \\ \gamma_4 &= \gamma_3 \, (F_{k,2} + F_{k,l}) = \gamma_l \, (F_{k,2} + F_{k,l})^3. \\ \vdots \\ \gamma_{n+l} &= \gamma_l \, (F_{k,2} + F_{k,l})^n. \end{split}$$

thus
$$\gamma_{n+l} = \gamma_n \left(F_{k,2} + F_{k,l} \right) = \gamma_l \left(F_{k,2} + F_{k,l} \right)^n$$
.

We will prove (b) by mathematical induction.

Let P(n) be the statement

$$\begin{aligned} \alpha_{2n} &= \gamma_{l} s (F_{k,2} + F_{k,l})^{2n \cdot l} + as \cdot bs \text{ for } n \geq l. \end{aligned}$$
 We will show that $P(l)$ is true.

consider,

$$\begin{split} \gamma_{I}s(F_{k,2}+F_{k,I})^{2(1)-I} &+ as - bs \\ &= s(kc+a+b)(k+1) + as - bs \\ &= k^{2}sc + ksa + ksb + ksc + as - bs + as + bs \\ &= k^{2}sc + ks(a+b+c) + 2as + \alpha_{2(I)} \end{split}$$

Then P(1) is true.

Let $n \ge 1$, assume that P(m) is true. That is, $\alpha_{2m} = \gamma_1 s(F_{k,2} + F_{k,1})^{2m \cdot 1} + as - bs$. We will show that P(m+1) is true. Consider,

$$\begin{split} \alpha_{2(m+1)} &= \alpha_{2m+2} \\ &= ks\gamma_{2m+1} + \beta_{2m+1} \\ &= ks\gamma_{2m+1} + \beta_{2m} + \alpha_{2m} \\ &= ks\gamma_1(F_{k,2} + F_{k,1})^{2m} + ks\gamma_1(F_{k,2} + F_{k,1})^{2m-1} \\ &+ \gamma_1 s(F_{k,2} + F_{k,1})^{2m-1} + as - bs \\ &= ks\gamma_1(k+1)^{2m} + ks\gamma_1(k+1)^{2m-1} \\ &+ \gamma_1 s(k+1)^{2m-1} + as - bs \\ &= ks\gamma_1(k+1)(k+1)^{2m-1} + ks\gamma_1(k+1)^{2m-1} \\ &+ \gamma_1 s(k+1)^{2m-1} + as - bs \\ &= \gamma_1 s(k+1)^{2m-1} + [k(k+1) + k + 1] + as - bs \\ &= \gamma_1 s(k+1)^{2m+1} + as - bs \\ &= \gamma_1 s(F_{k,2} + F_{k,1})^{2(m+1)-1} + as - bs \end{split}$$

then P(m+1) is true.

By mathematical induction the statement P(n) is true for all $n \ge 1$.

The proof of (c) is similar to (b).

From (a) and (c) we have (d), and similarly from (a) and (b) we also have (e).

Conclusion and Discussion

A new three combined sequences related to *k*-Fibonacci sequences from new types were introduced and explicit formulas for their members are given.

From our sequences,

the first set of sequences,

$$\gamma_{n+2} = k\gamma_{n+1} + \gamma_n$$
$$\alpha_{n+1} = ks\gamma_n + \beta_n$$
$$\beta_{n+1} = ks\gamma_n + \alpha_n$$

the second set of sequences,

$$\gamma_{n+2} = k\gamma_{n+1} + \gamma_n$$
$$\alpha_{n+1} = ks\gamma_{n+1} + \beta_n$$
$$\beta_{n+1} = ks\gamma_{n+1} + \alpha_n$$

the third set of sequences,

$$\gamma_{n+1} = k\gamma_n + \frac{\alpha_n + \beta_n}{2s}$$
$$\alpha_{n+1} = ks\gamma_n + \beta_n,$$
$$\beta_{n+1} = ks\gamma_n + \alpha_n.$$

If s = 1, then the results correspond to the 3 set of sequences and the theorem 1.1, 1.2, and 1.3 in (Pakapongpun & Kongson, 2022). Other new schemes, modifying the standard form of *k*-Fibonacci sequences and new combined sequences will be discussed in the future.

Acknowledgements

We thank the referees for their valuable reports that have improved this work.

References

Falcon, S., & Plaza, Á. (2007). On the fibonacci k-numbers. *Chaos, Solitons Fractals, 32*(5), 1615-1624.

- Atanassov, K. T. (2018). On two new combined 3-Fibonacci sequences. *Notes on Number Theory and Discrete Mathematics*, *24*(2), 90-93.
- Atanassov, K. T. (2018). On two new combined
 3-Fibonacci sequences. Part 2. Notes on Number Theory and Discrete Mathematics, 24(3), 111-114.
- Nubpetchploy, S., Pakapongpun, A. (2021). Three combined sequences related to Jacobsthal sequences. *International Journal of Mathematics and Computer Science, 16*(1), 149-157.
- Atanassov, K. T. (2022). On two new combined
 3-Fibonacci sequences. Part 3. Notes on Number
 Theory and Discrete Mathematics, 28(1), 143-146.
- Pakapongpun, A., & Kongson, J. 2022. "Three combined sequences related to k-Fibonacci sequences. *Computer Science*, 7(2), 551-559.