สมบัติของตัวดำเนินการ $\Re^*_{\ m}$ ในปริภูมิโครงสร้างเล็กสุดที่มีอุดมคติ Properties of $\Re^*_{\ m}$ -operator in minimal structure space with an ideal

ยุทธพงศ์ มนัสทิพารมณ์¹, ดรุณี บุญชารี²³, โชคชัย วิริยะพงษ์³, Yutthapong Manuttiparom¹, Daruni Boonchari²¹, Chokchai Viriyapong³

Received: 19 October 2020; Revised: 20 December 2020; Accepted: 8 January 2021

บทคัดย่อ

ในบทความนี้ ผู้วิจัยได้นำเสนอเซตเปิดแบบ δ -m เซตเปิดแบบ a-m ฟังก์ชันแบบ δ -m-local ตัวดำเนินการแบบ $R^a_{\ m}$ บนปริภูมิ โครงสร้างเล็กสุดที่มีอุดมคติพร้อมทั้งศึกษาสมบัติของฟังก์ชัน และตัวดำเนินการนี้

คำสำคัญ: เชตเปิดแบบ δ -m เชตเปิดแบบ a-m ฟังก์ชันแบบ δ -m-local ตัวดำเนินการแบบ $R^a_{\ m}$ ปริภูมิโครงสร้างเล็กสุดที่มี อุดมคติ

Abstract

In this article, the concepts of δ -m-open sets, a-m-open sets in a minimal structure space with an ideal are introduced. In addition, we present an a-m-local function and an R^a_m -operator in a minimal structure space with an ideal. We studied the properties of the function and this operator.

Keywords: δ -m-open sets, a-m-open sets, δ -m-local functions, R^a_m -operator, a minimal structure space with an ideal.

¹ นิสิตปริญญาโท, คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม อำเภอกันทรวิชัย จังหวัดมหาสารคาม 44150

² ผู้ช่วยศาลตราจารย์, คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม อำเภอกันทรวิชัย จังหวัดมหาสารคาม 44150

³ ผู้ช่วยศาสตราจารย์, คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม อำเภอกันทรวิชัย จังหวัดมหาสารคาม 44150

¹ Master degree student, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand.

² Asst. Prof., Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand.

³ Asst. Prof., Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand.

^{*} Corresponding author; Daruni Boonchari, Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand. daruni.b@msu.ac.th.

Introduction

In 1945, Vaidyanathaswamy (1945) defined a local function in an ideal topological space and studied some properties of this function. In 1996, Maki, Umehara and Noiri (1996) defined a minimal structure and studied some properties of this structure. In 2014, Al-Omeri et al. (2014) defined an *a-local* function in an ideal topological space and also studied some properties of an a-local function. Later in 2016, Al-Omeri et al. (2016) defined an R_a-operator in an ideal topological space and studied some properties of this operator. In this article, we introduce the concepts of δ -m-open sets and δ -m-open sets in a minimal structure space with an ideal and study some fundamental properties. Moreover, we introduce the notions of δ -m-localfunctions and R^a perators in minimal structure spaces, along with studying some properties related to an δ -m-local function and an $R^a_{\ m}$ -operator defined above.

Preliminaries

Definition 2.1⁵ Let X be a nonempty set and P(X) the power set of X. A subfamily M of P(X) is called a minimal structure (briefly MS) on X if $\emptyset \in m$ and $X \in m$.

By (X,m) we denote a nonempty set X with a minimal structure m on X and it is called a minimal structure space. Each member of m is said to be m-open and the complement of m-open is said to be m-closed.

Definition 2.2 (Noiri & Popa, 2009) Let (X,m) be a minimal structure space and $A \subseteq X$. The m-closure of A, denoted by $CI_m(A)$ and the m-interior of A, denoted by $Int_m(A)$, are defined as follows;

- 1) $CI_{m}(A) = \bigcap \{F: A \subseteq F, X \setminus F \in m\},$
- 2) $Int_m(A) = \bigcup \{U: U \subseteq A, U \in m\}.$

Lemma 2.3 (Maki & Gani, 1999) Let (X,m) be a minimal structure space and $A,B\subseteq X$, the following properties hold ;

- $(1) \ CI_{_m}(X \setminus A) = X \setminus Int_{_m}(\ A) \ \text{and} \ Int_{_m}(X \setminus A) = X \setminus CI_{_m}(A).$
- (2) If $X \setminus A \in m$, then $CI_m(A) = A$ and if $A \in m$, then $Int_m(A) = A$.
- (3) $CI_m(\emptyset) = \emptyset$, $CI_m(X) = X$, $Int_m(\emptyset) = \emptyset$, and $Int_m(X) = X$.

- (4) If $A\subseteq B$, then $CI_m(A)\subseteq CI_m(B)$ and $Int_m(A)\subseteq Int_m(B)$.
 - (5) $A \subseteq CI_m(A)$ and $Int_m(A) \subseteq A$.
- (6) $CI_m(CI_m(A)) = CI_m(A)$ and $Int_m(Int_m(A)) = Int_m(A)$.

Lemma 2.4 (Maki & Gani, 1999) Let (X,m) be a minimal structure space and $A \subseteq X$, $x \in X$. Then $x \in CI_m(A)$ if and only if $U \cap A \neq \emptyset$) for every an m-open set U containing X.

Definition 2.5 (Rosas *et al.*, 2009) Let (X,m) be a minimal structure space and $A \subseteq X$.

- (1) A is called m-regular open if $A = Int_m(CI_m(A))$
- (2) A is called m-regular closed if $X \setminus A$ is m-regular open.

The family of all m-regular open sets of X is denoted by r(m) and the family of all m-regular closed sets of X is denoted by rc(m).

Definition 2.6 (Ozbakir & Yildirim, 2009) An ideal \mathscr{I} on a minimal structure space (X,m) is a nonempty collection of subsets of X which satisfies the following properties ;

- (1) $A \in \mathscr{I}$ and $B \subseteq A$ implies $B \in \mathscr{I}$ (heredity),
- (2) $A \in \mathcal{J}$ and $B \in \mathcal{J}$ implies $A \cup B \in \mathcal{J}$ (finite additivity).

The set \mathscr{I} together with a minimal structure space (X,m) is called a minimal structure space with an ideal, denoted by (X,m,\mathscr{I}) .

Main Results

Definition 3.1 Let (X,m) be a minimal structure space. A subset A is said to be δ -m-open if for each $X \in A$ there exists an m-regular open set G such that $X \in G \subseteq A$. The complement of δ -m-open set is called δ -m-closed. The family of all δ -m-closed sets of X, denoted by $\delta C_m(X)$.

Theorem 3.2 Let (X,m) be a minimal structure space and $A \subseteq X$. The arbitrary union of δ -m-open sets is a δ -m-open set.

Proof Let B_{α} be a δ -m-open set for all $\alpha \in J$ where J is an index set and let $\mathbf{x} \in \bigcup_{\alpha \in J} \mathbf{B}_{\alpha}$. There exists $\beta \in J$ such that $x \in B_{\alpha}$. Since B_{β} is δ -m-open, there exists an m-regular open set G_{β} such that $X \in G_{\beta} \subseteq B_{\beta}$. Then $\mathbf{x} \in G_{\beta} \subseteq B_{\beta} \subseteq \bigcup_{\alpha \in J} \mathbf{B}_{\alpha}$. Therefore $\bigcup_{\alpha \in J} \mathbf{B}_{\alpha}$ is δ -m-open.

215

Definition 3.3 Let (X,m) be a minimal structure space and $A \subseteq X$. A point $x \in X$ is called a δ -m-cluster point of A if $U \cap A \neq \emptyset$ for each m-regular open set U containing X.

Definition 3.4 Let (X,m) be a minimal structure space and $A \subseteq X$. The set of all δ -m-cluster points of A is called δ -m-closure of A and is denoted by $C_{\delta m}(A)$ and the union m-regular open sets contained in A is called the δ -m-interior of A, denoted by $I_{\delta m}(A)$.

Theorem 3.5 Let (X,m) be a minimal structure space and $A \subseteq X$. Then A is δ -m-open if and only if $I_{\delta m}(A) = A$.

Proof (\Rightarrow) Suppose that A is δ -m-open. By definition of δ -m-interior, $I_{\delta m}(A) = A$. Let $x \in A$. Since A is δ -m-open, there exists an m-regular open set O such that $x \in O \subseteq A$. This implies that $x \in I_{\delta m}(A)$. Then $A \subseteq I_{\delta m}(A)$. Hence $A = I_{\delta m}(A) = A$. (\Leftarrow) It follows from Theorem 3.2.

Theorem 3.6 Let (X,m) be a minimal structure space and $A,B\subseteq X$. The following property hold;

(1) If
$$A \subseteq B$$
, then $I_{\delta m}(A) \subseteq I_{\delta m}(B)$,

(2) If
$$A \subseteq B$$
, then $C_{\delta m}(A) \subseteq C_{\delta m}(B)$.

Proof (1) Assume that $A \subseteq B$ and $x \in I_{\delta m}(A)$. Then, there exists an m-regular open set G such that $x \in G \subseteq A$. Since $A \subseteq B$, we have $x \in G \subseteq A \subseteq B$. This implies that $x \in I_{\delta m}(B)$. Hence $I_{\delta m}(A) \subseteq I_{\delta m}(B)$.

(2) Let $A \subseteq B$. Assume that $x \notin C_{\delta m}(B)$. Then there exists an m-regular open set U containing X such that $U \cap B = \emptyset$. Since $A \subseteq B$, we have $U \cap A \subseteq U \cap B = \emptyset$. Thus $x \notin C_{\delta m}(A)$. Therefore $C_{\delta m}(A) \subseteq C_{\delta m}(B)$.

Theorem 3.7 Let (X,m) be a minimal structure space and $A\subseteq X$. The following properties hold;

(1)
$$C_{\delta m}(A) = X \setminus I_{\delta m}(X \setminus A)$$
,

(2)
$$I_{\Delta m}(A) = X \setminus C_{\Delta m}(X \setminus A)$$
.

Proof (1) We will show that $C_{\delta m}(A) = X \setminus I_{\delta m}(X \setminus A)$ by contrapositive. Assume that $x \notin X \setminus I_{\delta m}(X \setminus A)$. We get that $X \setminus I_{\delta m}(X \setminus A)$. So there exists an m-regular open set G such that $x \in G \subseteq X \setminus A$. Then $G \cap A = \emptyset$ and $x \notin C_{\delta m}(A)$. Thus $C_{\delta m}(A) \subseteq X \setminus I_{\delta m}(X \setminus A)$.

Next, we show that $X\setminus I_{\delta m}(X\setminus A)\subseteq C_{\delta m}(A)$ by contrapositive. Assume that $x\not\in C_{\delta m}(A)$. Then x is not a δ -m-cluster point of A. There exists an m-regular open set G containing x such that $G\cap A=\emptyset$.

So $x \in G \subseteq X \setminus A$ and we get that $x \in I_{\delta m}(X \setminus A)$. Hence $x \notin X \setminus I_{\delta m}(X \setminus A)$. Thus $X \setminus I_{\delta m}(X \setminus A) \subseteq C_{\delta m}(A)$.

(2) Since $X \setminus A \subseteq X$, we have $C_{\delta m}(X \setminus A) = X \setminus I_{\delta m}(X \setminus (X \setminus A))$ by (1) and we get $C_{\delta m}(X \setminus A) = X \setminus I_{\delta m}(A)$. Therefore $I_{\delta m}(X \setminus A) = X \setminus C_{\delta m}(X \setminus A)$.

Definition 3.8 Let (X,m) be a minimal structure space and $A \subseteq X$.

 $\text{(1) A is called a-m-$open if $A\subseteq Int_{_{m}}(CI_{_{m}}(I_{\delta_{m}}(A)))$.}$ The family of all \$a\$-\$m\$-\$open sets of \$X\$ is denoted by \$\mathcal{M}^{\delta}\$.}

(2)
$$A$$
 is called a - m - $closed$ if $CI_{\delta m}(Int_m(C_{\delta m}(A))) \subseteq A$.

Theorem 3.9 Let (X,m) be a minimal structure space and $A \subseteq X$. Then A is a-m-open if and only if $X \setminus A$ is a-m-closed.

Proof Assume that A is a-m-open. Then $A\subseteq Int_m(CI_m(I_{\delta m}(A)))$. and $X\setminus A\supseteq X\setminus (Int_m(CI_m(I_{\delta m}(A))))$. By Lemma 2.3 and Theorem 3.7, $X\setminus A\supseteq CI_m(Int_m(C_{\delta m}(X\setminus A)))$. Therefore, $X\setminus A$ is a-m-closed.

Conversely, assume that $X \setminus A$ is a-m-closed. Then $CI_m(Int_m(C_{\delta m}(X \setminus A))) \subseteq X \setminus A$ and $X \setminus CI_m(Int_m(C_{\delta m}(X \setminus A))) \supseteq X \setminus (X \setminus A)$. By Lemma 2.3 and Theorem 3.7, $Int_m(CI_m(I_{\delta m}(A))) \supseteq A$. Hence A is a-m-open.

Example 3.10 Let $X = \{a, b, c, d\}$ with a minimal structure $m = \{\emptyset, \{a,b\}, \{b,c\}, \{c,d\}, \{a,d\}, x\}$. Then $r(m) = \{\emptyset, \{a,b\}, \{a,d\}, \{b,c\}, \{c,d\}, x\}$, and $\delta O_m(x) = \{\emptyset, \{a,b\}, \{a,d\}, \{b,c\}, \{c,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, x\}$, \mathscr{M} $\stackrel{a}{=} \{\emptyset, \{a,b\}, \{a,d\}, \{b,c\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, x\}$. In this example $\{a,b\}, \{a,d\} \in \mathscr{M}^a$ but $\{a,b\} \cap \{a,d\} = \{a\} \notin \mathscr{M}^a$, that means \mathscr{M}^a does not have the property that any finite intersection of a-m-open sets is a-m-open.

Definition 3.11 Let (X,m) be a minimal structure space and $A \subseteq X$. The a-m-closure of A, denoted by $aC_m(A)$ and the a-m-interior of A, denoted by $aI_m(A)$, are defined as follows;

(1)
$$aC_m(A) = \bigcap \{F: X \setminus F \in \mathscr{M}^a \text{ and } A \subseteq F\},$$

(2) $aI_m(A) = \bigcup \{U: U \in \mathscr{M}^a \text{ and } U \subseteq A\}.$

Theorem 3.12 Let (X,m) be a minimal structure space and $A \subseteq X$, $x \in X$, Then $x \in aC_m(A)$ if and only if $U \cap A \neq \emptyset$ for every a-m-open set U containing x.

Proof (\Rightarrow) Suppose that there exists an *a-m-open* set U containing x such that $U \cap A = \emptyset$. So $A \subseteq X \setminus U$ and $X \setminus U$ is *a-m-closed*. Since $aC_{\infty}(A)$ is the intersection of

all a-m-closed sets containing A, $aC_m(A) \subseteq X \setminus U$. Since $x \notin X \setminus U$, we have $x \notin aC_m(A)$.

 $(\Leftarrow) \text{ Assume that } x \not\in aC_{\scriptscriptstyle m}(A). \text{ Then there exists}$ an a-m-closed set F such that $A \subseteq F$ and $x \not\in F$. Choose $U = X \setminus F$. Then U is a-m-open and $x \in X \setminus F = U$. Moreover, $U \cap A \subseteq (X \setminus F) \cap F = \emptyset$.

Theorem 3.13 Let (X,m) be a minimal structure space and $A, B \subseteq X$. The following properties hold;

- (1) If $A \subseteq B$, then $aC_m(A) \subseteq aC_m(B)$.
- (2) If $A \subseteq B$, then $aI_{m}(A) \subseteq aI_{m}(B)$.

Proof (1) Assume that $A \subseteq B$ and $x \notin aC_m(B)$. Then there exists an a-m-open set U containing x such that $U \cap F = \emptyset$. Since $A \subseteq B$, $U \cap A = \emptyset$. Hence $x \notin aC_m(A)$.

(2) Let $A \subseteq B$ and $x \in aI_m(A)$. Then there exists an a-m-open set U such that $x \in U \subseteq A$. Since $A \subseteq B$, $x \in U \subseteq B$. Therefore $x \in aI_m(B)$.

Proposition 3.14 Let (X,m) be a minimal structure space. Then $\emptyset \in \mathcal{M}^a$ and $X \in \mathcal{M}^a$.

Proof Since $\varnothing\subseteq Int_m(CI_m(I_{\delta m}(\varnothing)))$, \varnothing is a-m-open, and so $\varnothing\in\mathscr{M}^a$. Clearly $X=Int_m(CI_m(X))$, so X is an m-regular open. Then X is $\delta\text{-}m\text{-}open$, that is $I_{\delta m}(X)=X$, and so $X\subseteq Int_m(CI_m(I_{\delta m}(X)))$. Therefore $X\in\mathscr{M}^a$.

Theorem 3.15 Let (X,m) be a minimal structure space. Then the arbitrary union of elements of \mathscr{M}^a belongs to \mathscr{M}^a .

Proof Let V_{α} be a-m-open for all $\alpha \in J$ and $G = \bigcup_{\alpha \in J} V_{\alpha}$. Then $V_{\alpha} \subseteq Int_m(CI_m(I_{\delta m}(V_{\alpha})))$ for all $\alpha \in J$. Since $V_{\alpha} \subseteq G$, it follows that $I_{\delta m}(V_{\alpha}) \subseteq I_{\delta m}(G)$ and so $CI_m(I_{\delta m}(V_{\alpha})) \subseteq CI_m(I_{\delta m}(G))$. Then $Int_m(CI_m(I_{\delta m}(V_{\alpha}))) \subseteq Int_m$ $(CI_m(I_{\delta m}(G)))$. This implies that $V_{\alpha} \subseteq Int_m(CI_m(I_{\delta m}(G)))$ for all $\alpha \in J$. Thus $\bigcup_{\alpha \in J} V_{\alpha} \subseteq Int_m(CI_m(I_{\delta m}(G)))$. Therefore $G \subseteq Int_m(CI_m(I_{\delta m}(G)))$.

Corollary 3.16 Let (X,m) be a minimal structure space. Then the arbitrary intersection of a-m-closed sets is an a-m-closed set.

Proof Let G_α be a-m-closed for all $\alpha \in J$. Then $X \setminus G_\alpha$ is a-m-open and so $\bigcup (X \setminus \mathsf{G}_\alpha)$ is a-m-open. Since $X \setminus \bigcap_{\alpha \in \mathsf{J}} \mathsf{G}_\alpha = \bigcup_{\alpha \in \mathsf{J}} (X \setminus \mathsf{G}_\alpha)$, $\bigcap_{\alpha \in \mathsf{J}} \mathsf{G}_\alpha$ is a-m-closed.

Remark 3.17 In a minimal structure space, by Corollary 3.16, $aC_m(A)$ is a-m-closed.

Theorem 3.18 Let (X,m) be a minimal structure space and $A \subseteq X$. The following properties hold;

- (1) $aC_{m}(aC_{m}(A)) = aC_{m}(A)$,
- (2) $aI_{m}(aI_{m}(A)) = aI_{m}(A)$.

Proof (1) Clearly $aC_m(A) \subseteq aC_m(aC_m(A))$. Since $aC_m(A)$ is a-m-closed, $aC_m(aC_m(A)) \subseteq aC_m(A)$. Therefore $aC_m(aC_m(A)) = aC_m(A)$.

(2) Clearly $aI_m(aI_m(A))=aI_m(A)$. Since $aI_m(A)$ a-m-open, $aI_m(A)\subseteq aI_m(aI_m(A))$. Therefore $aI_m(aI_m(A))=aI_m(A)$.

Let (X,m,\mathcal{I}) be a minimal structure space with an ideal. For each $x\in X$, let $\mathscr{M}^a(x)=\{U:x\in U,U\in\mathscr{M}^a\}$ be the family of all a-m-open sets that contain x.

Definition 3.19 Let (X,m,\mathcal{I}) be a minimal structure space with an ideal and $A\subseteq X$. Then $\mathsf{A}^{\hat{a}}_{\mathsf{m}}(\mathcal{I},m)=\{x\in X:U\cap A\notin\mathcal{I}, \text{ for every }U\in\mathcal{M}^{\hat{a}}(x)\}$ is called a - m -local function of A with respect to \mathcal{I} and m. We denote simply $\mathsf{A}^{\hat{a}}_{\mathsf{m}}$ for $\mathsf{A}^{\hat{a}}_{\mathsf{m}}(\mathcal{I},m)$.

Remark 3.20 The minimal ideal is $\{\emptyset\}$ and the maximal ideal is P(x) in any minimal structure space with an ideal (X,m,\mathscr{I}) . It can be deduced that $A_m^{a^*}(\{\emptyset\},m)=aC_m(A)$ and $A_m^{a^*}(P(X),m)=\varnothing$ for every $A\subseteq X$.

Remark 3.21 In general, $A \subset A_m^{a^i}$ and $A_m^{a^i} \subset A$. The next example shows that $A \subset A_m^{a^i}$.

Example 3.22 Let $X = \{a,b,c,d\}$ with a minimal structure $m = \{\emptyset, \{a,b\}, \{b,c\}, \{c,d\}, \{a,d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}, A = \{a,b\}$. Then $\mathscr{M}^a = \{\emptyset, \{a,b\}, \{a,d\}, \{b,c\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, X\}$ and $\mathsf{A}_{\mathsf{m}}^a = \varnothing$.

Theorem 3.23 Let (X,m,\mathcal{I}) be a minimal structure space with an ideal and $A,B\subseteq X$. The following properties hold;

- (1) $(\varnothing)_{m}^{a} = \varnothing$.
- (2) If $A \subseteq B$, then $A_m^{a^*} \subseteq B_m^{a^*}$.
- (3) $(A_m^{a^*})_m^{a^*} \subseteq A_m^{a^*}$.
- $(4) \ A_{m}^{a^{*}} \cup B_{m}^{a^{*}} \subseteq (A \cup B)_{m}^{a^{*}}.$
- $(5) (A \cap B)_{m}^{a^{*}} \subseteq A_{m}^{a^{*}} \cap B_{m}^{a^{*}}.$
- $(6) \ (A \backslash B)_m^{a^*} \backslash (B)_m^{a^*} \subseteq A_m^{a^*} \backslash B_m^{a^*}.$

Proof (1) Assume $(\varnothing)_m^a \neq \varnothing$. Then there exists $\mathbf{X} \in (\varnothing)_m^a$. Since $X \in \mathscr{M}^a(X)$, $X \cap \varnothing \notin \mathscr{I}$. It contradicts with $X \cap \varnothing = \varnothing \notin \mathscr{I}$. Therefore $(\varnothing)_m^a = \varnothing$.

- (2) Assume that $A \subseteq B$. We will show that $A_m^{\mathring{a}} \subseteq B_m^{\mathring{a}}$ by contrapositive. Suppose that $X \not\in B_m^{\mathring{a}}$. Then there exists $U \in \mathscr{M}^a(X)$ such that $U \cap B \in \mathscr{I}$. From $A \subseteq B$ and the property of \mathscr{I} , $U \cap A \in \mathscr{I}$. Therefore $X \not\in A_m^{\mathring{a}}$.
- (3) Assume that $\mathbf{x} \in (\mathbf{A}_{\mathsf{m}}^{a^{\dagger}})_{\mathsf{m}}^{a}$, and $U \in \mathscr{M}^{a}$ (X). Then $\mathbf{A}_{\mathsf{m}}^{a} \cap \mathbf{U} \notin \mathscr{I}$ and so $\mathbf{A}_{\mathsf{m}}^{a} \cap \mathbf{U} \neq \mathscr{D}$. Thus there exists $\mathbf{y} \in \mathbf{A}_{\mathsf{m}}^{a^{\dagger}} \cap \mathbf{U}$, and so $\mathbf{y} \in U \in \mathscr{M}^{a}$ (\mathbf{y}) . This implies that $A \cap U \notin \mathscr{I}$. Therefore $\mathbf{x} \in \mathbf{A}_{\mathsf{m}}^{a}$.
- (4) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, by (2) $A_m^{\hat{a}} \subseteq (A \cup B)_m^{\hat{a}}$ and $B_m^{\hat{a}} \subseteq (A \cup B)_m^{\hat{a}}$. So $A_m^{\hat{a}} \cup B_m^{\hat{a}} \subseteq (A \cup B)_m^{\hat{a}}$.
- $(5) \ \, \text{Since} \ \, A \cap B \subseteq A \ \, \text{and} \ \, A \cap B \subseteq B, \ \, \text{by (2)} \\ (A \cap B)_m^{\mathring{a}} \subseteq A_m^{\mathring{a}} \qquad \text{and} \qquad (A \cap B)_m^{\mathring{a}} \subseteq B_m^{\mathring{a}}. \qquad S \ \, \text{o} \\ (A \cap B)_m^{\mathring{a}} \subseteq A_m^{\mathring{a}} \cap B_m^{\mathring{a}}.$
- (6) Since $A \backslash B \subseteq A$, by (2) $(A \backslash B)_m^{\hat{a}} \subseteq A_m^{\hat{a}} . So$ $(A \backslash B)_m^{\hat{a}} \backslash B_m^{\hat{a}} \subseteq A_m^{\hat{a}} \backslash B_m^{\hat{a}}.$

Theorem 3.24 Let (X,m) be a minimal structure space and \mathscr{I} . \mathscr{J} are ideals on X where $\mathscr{I}\subseteq\mathscr{J}$. Then $A_m^a(\mathscr{I},m)\subseteq A_m^a(\mathscr{I},m)$ for all $A\subseteq X$.

Proof Let $A \subseteq X$. Assume that $x \in A_m^{\hat{a}}(\mathcal{J}, m)$. Then $U \cap A \notin \mathcal{J}$ for every $U \in \mathscr{M}^a(x)$. Since $\mathcal{J} \subseteq \mathcal{J}$, $U \cap A \notin \mathcal{J}$ for every $U \in \mathscr{M}^a(x)$. Thus $x \in A_m^{\hat{a}}(\mathcal{J}, m)$. Hence $A_m^{\hat{a}}(\mathcal{J}, m) \subseteq A_m^{\hat{a}}(\mathcal{J}, m)$.

Theorem 3.25 Let (X,m,\mathscr{I}) be a minimal structure space with an ideal and $A\subseteq X$. The following properties hold;

- $(1) A_m^{a^*} \subseteq aC_m(A),$
- (2) $A_m^{a^*} = aC_m(A)$, (i,e., $A_m^{a^*}$ is an a-m-closed subset).

Proof (1) Assume that $x \notin aC_m(A)$. Then there exists an a-m-closed set F such that $A \subseteq F$ and $x \notin F$. Thus $x \in X \setminus F$, and so $X \setminus F \in \mathscr{M}^a(x)$. Hence $(X \setminus F) \cap A = \emptyset \in \mathscr{I}$, and so $X \notin A_m^a$. This implies that $A_m^a \subseteq aC_m(A)$.

(2) It is clear that $A_m^a \subseteq aC_m(A_m^a)$. Next, we will prove that $aC_m(A_m^a) \subseteq A_m^a$. Let $x \in aC_m(A_m^a)$ and $U \in \mathscr{M}^a$ (x). Then $A_m^a \cap U \neq \varnothing$. Therefore there exists $y \in A_m^a \cap U$, so $U \in \mathscr{M}^a$ (y). Since $y \in A_m^a$, $A \cap U \notin \mathscr{I}$, and so $x \in A_m^a$. Then $A_m^a = aC_m(A_m^a)$.

Theorem 3.26 Let (X,m,\mathscr{I}) be a minimal structure space with an ideal and $A\subseteq X$. The following properties hold;

- (1) If $A \in \mathscr{I}$, then $A_{m}^{a^{*}} = \varnothing$.
- (2) If $U \in \mathcal{I}$, then $A_m^{a^*} = (A \cup U)_m^{a^*}$.
- (3) If $U \in \mathcal{I}$, then $A_m^{a^*} = (A \setminus U)_m^{a^*}$.

Proof (1) Assume that $A_m^{a^*} \neq \emptyset$. Then there exists $x \in A_m^{a^*}$. Since $X \in \mathcal{M}^a(x)$, $A = X \cap A \notin \mathcal{I}$.

- (2) Assume that $U \in \mathscr{I}$. Since $A \subseteq A \cup U$ by Theorem 3.23(2), we get $A_m^{\hat{a}} \subseteq (A \cup U)_m^{\hat{a}}$. Next, we will prove that $(A \cup U)_m^{\hat{a}} \subseteq A_m^{\hat{a}}$ by contrapositive. Suppose that $x \notin A_m^{\hat{a}}$. Then there exists $V \in \mathscr{M}(x)$ such that $A \cap V \in \mathscr{I}$. Since $(A \cup U) \cap V = (A \cap V) \cup (U \cap V) \in \mathscr{I}$, $(A \cup U) \cap V \in \mathscr{I}$. Therefore $x \notin (A \cap U)_m^{\hat{a}}$.
- (3) Assume that $U \in \mathscr{I}$. Since $A_m^{a^*} = (A \cap X)_m^{a^*} = (A \cap ((X \setminus U) \cup U))_m^{a^*} = ((A \setminus U) \cup (A \cup U))_m^{a^*}$ and $A \cap U \subseteq U \in \mathscr{I}$, by (2) $A_m^{a^*} = (A \setminus U)_m^{a^*}$.

Definition 3.27 Let (X,m,\mathcal{I}) be a minimal structure with an ideal. An operator $\mathfrak{R}^a_m:P(X)\to P(X)$ is defined as follows; for every $A\in P(X)$, $\mathfrak{R}^a_m(A)=\{x\in X: \text{there exists }U\in \mathscr{M}^a(x) \text{ such that }U\backslash A\in \mathcal{I}\}.$

Theorem 3.28 Let (X,m,\mathscr{I}) be a minimal structure space with an ideal and $A \in P(X)$. Then $\mathfrak{R}_m^a(A) = X \setminus (X \setminus A)_m^a$.

Proof Let $X \in \mathfrak{R}^a_m(A)$. Then there exists an a-m-open set U containing x such that $U \setminus A \in \mathscr{I}$. Thus $U \cap (X \setminus A) \in \mathscr{I}$. So $x \notin (X \setminus A)^a_m$ and hence $x \in X \setminus (X \setminus A)^a_m$. Therefore $\mathfrak{R}^a_m(A) \subseteq X \setminus (X \setminus A)^a_m$.

For the reverse inclusion, let $x \in X \setminus (X \setminus A)_m^a$. Then $x \notin (X \setminus A)_m^a$. Thus there exists an *a-m-open* set U containing x such that $U \cap (X \setminus A) \in \mathscr{I}$. This implies that $U \setminus A \in \mathscr{I}$. Hence $x \in \mathfrak{R}_m^a(A)$. So $X \setminus (X \setminus A)_m^a \subseteq \mathfrak{R}_m^a(A)$. Therefore $\mathfrak{R}_m^a(A) = X \setminus (X \setminus A)_m^a$.

Example 3.29 Let $X = \{a,b,c,d\}$ with a minimal structure $m = \{\emptyset, \{a,b\}, \{b,c\}, \{c,d\}, \{a,d\}, X\}$ and $\mathscr{I} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}, A = \{a,b\}$. Then $= \{\emptyset, \{a,b\}, \{a,d\}, \{b,c\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, X\}$ and $\mathfrak{R}^{\mathtt{a}}_{\mathtt{m}}(\mathsf{A}) = \{\mathtt{a},\mathtt{b}\}$.

Theorem 3.30 Let (X,m,\mathcal{I}) be a minimal structure space with an ideal, and $A\subseteq X$. Then $\mathfrak{R}^a_m(A)$ is a-m-open.

Proof We know that $\mathfrak{R}_{m}^{a}(A) = X \setminus (X \setminus A)_{m}^{a^{*}}$ and $(X \setminus A)_{m}^{a^{*}}$ is *a-m-closed*. Therefore $\mathfrak{R}_{m}^{a}(A)$ is *a-m-open*.

Theorem 3.31 Let (X,m,\mathscr{I}) be a minimal structure space with an ideal and $A,B\subseteq X$. Then the following properties hold;

- (1) If $A \subseteq B$, then $\mathfrak{R}_{m}^{a}(A) \subseteq \mathfrak{R}_{m}^{a}(B)$.
- (2) If $A \subseteq B$, then $\mathfrak{R}_m^a(A \cap B) \subseteq \mathfrak{R}_m^a(A) \cap \mathfrak{R}_m^a(B)$.
- (3) If $A \subseteq B$, then $\mathfrak{R}_{m}^{a}(A) \cup \mathfrak{R}_{m}^{a}(B) \subseteq \mathfrak{R}_{m}^{a}(A \cup B)$.
- (4) If $A \in \mathcal{M}^a$, then $A \subseteq \mathfrak{R}_m^a(A)$.
- (5) If $A \subseteq B$, then $\mathfrak{R}_m^a(A) \subseteq \mathfrak{R}_m^a(\mathfrak{R}_m^a(A))$.

Proof (1) Assume that $A \subseteq B$. Then $X \setminus B \subseteq X \setminus A$. By Theorem 3.23(2), $(X \setminus B)_m^{\mathring{a}} \subseteq (X \setminus A)_m^{\mathring{a}}$ and hence $X \setminus (X \setminus A)_m^{\mathring{a}} \subseteq X \setminus (X \setminus B)_m^{\mathring{a}}$. Therefore $\mathfrak{R}_m^a(A) \subseteq \mathfrak{R}_m^a(B)$.

- $(2) \quad \text{Since} \quad A \cap B \subseteq A \quad \text{and} \quad A \cap B \subseteq B \,, \\ \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A} \cap \mathsf{B}) \subseteq \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A}) \quad \text{and} \quad \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A} \cap \mathsf{B}) \subseteq \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{B}) \,. \text{ Therefore} \quad \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A} \cap \mathsf{B}) \subseteq \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A}) \cap \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{B}) \,.]$
- $(3) \quad \text{Since} \quad A \subseteq A \cup B \quad \text{and} \quad B \subseteq A \cup B, \\ \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A}) \subseteq \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A} \cup \mathsf{B}) \quad \text{and} \quad \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{B}) \subseteq \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A} \cup \mathsf{B}). \text{ Therefore} \quad \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A}) \cup \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{B}) \subseteq \mathfrak{R}_{\mathsf{m}}^{\mathsf{a}}(\mathsf{A} \cup \mathsf{B}).$
- (4) Assume that $A \in \mathscr{M}^a$. Then $X \setminus A$ is a-m-closed. By Theorem 3.25(1), we get that $(X \setminus A)_m^a \subseteq aC_m(X \setminus A) = X \setminus A$. Therefore $A = X \setminus (X \setminus A) \subseteq X(X \setminus A)_m^a = \mathfrak{R}_m^a(A)$.
- (5) By Theorem 3.30, we get that $\mathfrak{R}_{m}^{a}(A)$ is a-m-open. By (4), we get that $\mathfrak{R}_{m}^{a}(A) \subseteq \mathfrak{R}_{m}^{a}(\mathfrak{R}_{m}^{a}(A))$.

Theorem 3.32 Let (X,m,\mathscr{I}) be a minimal structure space with an ideal and $A,B,U\subseteq X$. Then the following properties hold ;

- (1) If $U \in \mathcal{I}$, then $\mathfrak{R}_{m}^{a}(A \setminus U) = \mathfrak{R}_{m}^{a}(A)$.
- (2) If $U \in \mathcal{I}$, then $\mathfrak{R}_{m}^{a}(A \cup U) = \mathfrak{R}_{m}^{a}(A)$.
- (3) If $(A \setminus B) \cup (B \setminus A) \in \mathscr{I}$, then $\Re_m^a(A) = \Re_m^a(B)$.
- (4) If $A \in \mathcal{I}$, then $\mathfrak{R}_{m}^{a}(A) = X \setminus X_{m}^{a^{*}}$.

Proof (1) Assume that $A\subseteq X$, $U\in\mathcal{I}$. By Theorem 3.26(2) and 3.28, we have $\mathfrak{R}_{m}^{a}(A\setminus U)=X\setminus (X\setminus (A\setminus U))_{m}^{a}=X\setminus ((X\setminus A)\cup U))_{m}^{a}=X\setminus (X\setminus A)_{m}^{a}$. Therefore $\mathfrak{R}_{m}^{a}(A\setminus U)=\mathfrak{R}_{m}^{a}(A)$.

(2) Assume that $U \in \mathscr{I}$. By Theorem 3.26(3), we have $\mathfrak{R}_{m}^{a}(A \cup U) = X \setminus (X \setminus (A \cup U))_{m}^{a^{*}} = X \setminus ((X \setminus A) \setminus U)_{m}^{a^{*}} = \mathfrak{R}_{m}^{a}(A)$.

(3) Assume that $(A \setminus B) \cup (B \setminus A) \in \mathscr{I}.$ Thus

$$\begin{split} \mathfrak{R}_{m}^{a}(A) &= \mathfrak{R}_{m}^{a}(A \setminus (A \setminus B)) \\ &= \mathfrak{R}_{m}^{a}((A \setminus (A \setminus B)) \cup (B \setminus A)) \\ &= \mathfrak{R}_{m}^{a}(B). \end{split}$$

(4) Assume that $A \in \mathscr{I}$. By Theorem 3.26(3), we get that $\mathfrak{R}_m^a(A) = X \setminus (X \setminus A)_m^a = X \setminus X_m^a$.

Theorem 3.33 Let (X,m,\mathscr{I}) be a minimal structure space with an ideal and $A\subseteq X$. Then $\mathfrak{R}_{\mathrm{m}}^{\mathrm{a}}(\mathsf{A})=\mathfrak{R}_{\mathrm{m}}^{\mathrm{a}}(\mathfrak{R}_{\mathrm{m}}^{\mathrm{a}}(\mathsf{A}))$ ifandonlyif $(\mathsf{X}\setminus\mathsf{A})_{\mathrm{m}}^{\hat{\mathrm{a}}}=((\mathsf{X}\setminus\mathsf{A})_{\mathrm{m}}^{\hat{\mathrm{a}}})_{\mathrm{m}}^{\hat{\mathrm{a}}}$.

Proof It follows from the facts that,

I)
$$\mathfrak{R}_{m}^{a}(A) = X \setminus (X \setminus A)_{m}^{a}$$
 and \mathfrak{R}_{a}

$$| | |) \qquad \mathfrak{R}_{m}^{a}(\mathfrak{R}_{m}^{a}(A)) = X \setminus [X \setminus (X \setminus A)_{m}^{a})]_{m}^{a}$$

$$= X \setminus ((X \setminus A)_{m}^{a})_{m}^{a}.$$

Therefore $\mathfrak{R}_{m}^{a}(A) = \mathfrak{R}_{m}^{a}(\mathfrak{R}_{m}^{a}(A))$ if and only if $(X \setminus A)_{m}^{a} = ((X \setminus A)_{m}^{a})_{m}^{a}$.

Discussion and Conclusion

The aim of this article is to introduce the results of properties of some sets in a minimal structure space with an ideal. In addition, we study some properties of δ -*m*-open sets, *a*-*m*-open sets in a minimal structure space with an ideal. Moreover, we define an δ -*m*-local function and an $R^a_{\ m}$ -operator in a minimal structure space with an ideal. Someproperties of them are obtained.

Acknowledgements

The authors would like to thank the referees for helpful comments suggestions on the manuscript. It has received help from seniors, juniors, and friends in mathematics as well.

References

Vaidyanathaswamy, R. (1945). The localization theory in set-topology. Proc. Indian Acad. *Sci.* 20, 51-61.

Al-Omeri, W, Noorani, M. & Al-Omari, A. (2014). a-local function and it's properties in ideal topological space. Fasc. *Math*, *53*, 1-15.

Al-Omeri, W., Noorani, M. & Al-Omari, A. (2016). The operator in ideal topological space. Creat. *Math*, 25, 1-10.

- Noiri, T. & Popa, V. (2009). A generalization of some forms of g-irresolute functions. European j. of Pure and Appl. *Math*, *2*(4): 473-493.
- Maki, H., Nagoor & Gani, K.C. (1999). On generalized semi-open and preopen sets. Pure Appl. *Math, 49*, 17-29.
- Rosas, E., Rajesh, N. & Carpintero, C. (2009). Some new type of open and closed sets in minimal structure-II. *International Mathematical Form, 44*, 2185-2198.
- Ozbakir, O.B. & Yildirim, E.D. (2009). On some closed sets in ideal minimal spaces. Acta Math. *Hungar*, *125*(3), 227-235.
- Maki, H, Umehara, T. & Noiri, T. (1996). Every topological space in pre T_{1/2}. Mem. Fac. Sci. Kochi Univ. Ser. *A Math. 17*, 33-42.