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บทคัดย่อ
การเพิ่มประสิทธิภาพชาตินโบเวอร์เบิร์ด เป็นขั้นตอนวิธีเมตาฮิวริสติกท่ีพัฒนาเม่ือเร็วๆ นี้ ปัญหาหลักท่ีขั้นตอนวิธีชาตินโบ
เวอร์เบิร์ดเผชิญอยู่ซึ่งได้รับการพิสูจน์แล้วอย่างชัดเจน การติดอยู่ในค่าคำ�ตอบดีที่สุดเฉพาะที่อย่างง่ายดาย มีความแม่นยำ�ต่ำ� 
และความเรว็ในลูเ่ขา้แกป้ญัหาการหาคา่เหมาะสมทีช่า้ ดงันัน้ในความพยายามทีจ่ะเพิม่ความเรว็ในการลูเ่ขา้แกป้ญัหาการหาคา่
เหมาะสมทีแ่ทจ้ริง และไดร้บัประสทิธภิาพทีด่ขีึน้ บทความนีจ้ะนำ�เสนอทฤษฎคีวามอลวนในกระบวนการเพิม่ประสิทธิภาพขัน้ตอน 
วธิชีาตนิโบเวอรเ์บริด์ ตวัแปรความวุน่วายในแมปจะถกูนำ�มาพจิารณาโดยการนำ�เสนอวธิคีวามอลวนกบัขัน้ตอนวธิชีาตนิโบเวอร์
เบิร์ด เพื่อที่จะแทนที่ตัวแปรหลัก (α) ซึ่งช่วยในการควบคุมทั้งการสำ�รวจพื้นที่และการนำ�ไปใช้ประโยชน์ของขั้นตอนวิธีชาติน 
โบเวอร์เบิร์ด เราทดสอบความอลวนกับขั้นตอนวิธีชาตินโบเวอร์เบิร์ด ผ่านการทดสอบการเพิ่มประสิทธิภาพฟังก์ชันตัวเลข 
ผลลัพธ์เชิงตัวเลขระบุว่าขั้นตอนวิธีท่ีเราได้นำ�เสนอนั้นมีประสิทธิภาพเหนือกว่าขั้นตอนวิธีการเพิ่มประสิทธิภาพอื่นทั้ง 11  
ขั้นตอนวิธี

คำ�สำ�คัญ: 	 การเพิ่มประสิทธิภาพซาตินโบเวอร์เบิร์ด ขั้นตอนวิธีเมตาฮิวริสติก ทฤษฎีความอลวน แมปความอลวน

Abstract
The Satin Bowerbird Optimization (SBO) is a recently developed meta-heuristic optimization algorithm. The main 
problem faced by the SBO is that it has been empirically demonstrated to become easily trapped into local optimal 
solutions, creating low precision and slow convergence speeds. Therefore, in an effort to enhance global convergence 
speeds, and to obtain better performance, this paper introduces Chaos Theory into the SBO optimization process. 
Various chaotic maps were considered in the proposed Chaotic-SBO (CSBO) method in order to replace the main 
parameter’s greatest step size (α), which assists in controlling both exploration and exploitation. We tested CSBO 
algorithms through experiments with the numerical function optimization. The numerical results indicate that the CSBO 
algorithm outperformed 11 other optimization algorithms. 
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Introduction
The goal of the optimization problem is to search for 
a maximum or minimum of an objective function value 
in widely varied local optima, under highly complex  
constraints, and in a reasonable amount of time  
(Yang et al., 2014). Consequently, chaotic sequences  
generated by means of chaotic maps have been used in 
the development of global optimization techniques. The 
first introduction of chaos into the optimization challenge 
was the Chaos Optimization Algorithm (COA) in 1963, 
by E.N. Lorenz (Lorenz, 1963). The COA represents 
the bounded, unstable, dynamic behavior that exhibits 
sensitive dependence on its initial conditions (Yuan et 
al., 2014) named chaos optimization algorithm (COA. 
Uniquely characteristic of chaotic behavior, the COA 
carries out global exploration searches at higher speeds 
than stochastic ergodic searches, which are dependent 
on probabilities (Yuan et al., 2015) all individuals in the 
PCOA search independently without utilizing the fitness 
and diversity information of the population. In view of the 
limitation of PCOA, a novel PCOA with migration and 
merging operation (denoted as MMO-PCOA.

	 Chaos is a characteristic of several nonlinear 
systems as motion distributes within a specific range, 
as it possesses degrees of uncertainty, ergodicity, 
and stochasticity. Many researchers therefore use the 
characteristics of chaotic ergodicity to solve for the 
global optimal solution of complex nonlinear multi-peak 
problems, by weakening the randomness or constant 
parameters of the metaheuristic optimization algorithm 
(Huang et al., 2015) which is widely used to solve many 
optimization problems. However, it has been empirically 
demonstrated to easily get trapped into local optimal  
solutions and cause low precision. Therefore, in this work, 
we propose five modified Chaos-enhanced Cuckoo search 
(CCS. As a result, most current work is devoted to the 
improvement of global optimization algorithms to tackle 
the abovementioned shortcomings. Further interest has 
been developed in the field of hybrid algorithms, especially 
in typical and emerging heuristic optimization algorithms; 
such as the migration and merging operation (Yuan et al., 
2015) all individuals in the PCOA search independently 
without utilizing the fitness and diversity information of 
the population. In view of the limitation of PCOA, a novel 

PCOA with migration and merging operation (denoted 
as MMO-PCOA, cuckoo search optimization algorithm 
(Huang et al., 2015)which is widely used to solve many 
optimization problems. However, it has been empirically 
demonstrated to easily get trapped into local optimal  
solutions and cause low precision. Therefore, in this work, 
we propose five modified Chaos-enhanced Cuckoo search 
(CCS, firefly algorithm (Gandomi et al., 2013), gravitational 
search algorithm (Mirjalili and Gandomi, 2017), whale 
optimization algorithm (Kaur & Arora, 2018), crow search 
algorithm (Problems et al., 2018), league championship 
algorithm (Wangchamhan et al., 2017)but the produced 
solution does not produce optimum clusters. This  
paper proposes three algorithms (i, salp swarm algorithm 
(Sayed et al., 2018), and the krill herd algorithm (Wang et 
al., 2014)Gandomi and Alavi proposed a meta-heuristic 
optimization algorithm, called Krill Herd (KH; all of which 
were hybridized with the COA. Various simulation results 
and applications in each of these references have proven 
the solution diversity and global optimization capacity of 
each chaos-based optimization algorithm.

	 The standard Satin Bowerbird Optimizer (SBO) 
was first proposed by S. H. Samareh Moosavi and V. 
Khatibi Bardsiri (Moosavi and Bardsiri, 2017)development 
effort estimation has become a challenging issue which 
must be seriously considered at the early stages of project. 
Insufficient information and uncertain requirements are 
the main reasons behind unreliable estimations in this 
area. Although numerous effort estimation models have 
been proposed during the last decade, accuracy level is 
not satisfying enough. This paper presents a new model 
based on a combination of adaptive neuro-fuzzy inference 
system (ANFIS in 2017, to optimize adaptive neuro-fuzzy  
inference system (ANFIS) for the purpose of effort  
estimation of software development. Its algorithm was 
bio-inspired by Satin Bowerbirds living in the rainforests 
and mesic habitats of Australia. Through the breeding 
principle of male-attracting-female, the male bowerbird 
attracts the female with the construction of a specialized 
bower. This technique, which is population-based on a 
stochastic optimization algorithm (Chintam and Daniel, 
2018); is very robust, straightforward, and efficient.  
Details of the original SBO and the literature related to its 
applications are presented in Sections 4 and 5.



J Sci Technol MSUTanachapong Wangkhamhan, Anongnart Rotjanakorn Wangkhamhan92

	 The principle concern we faced in our research 
was the way to introduce the Chaotic Satin Bowerbird  
Optimizer (CSBO) based methods in which different  
chaotic systems are used to replace the critical parameters 
of the SBO. Through this method, we intended to enhance 
the global searching ability of the SBO and increase its 
ability to stick on a local solution. The simulation results 
demonstrated the improved performance of the CSBO 
with the application of the deterministic chaotic signals, 
as opposed to the constant parameters of the SBO.

	 The remainder of this paper is organized in six 
sections. Section 2 briefly describes the SBO algorithm 
; Section 3 describes the chaotic maps for the SBO ; 
the proposed CSBO approach is detailed in Section 4 
; and comparisons of the CSBO with other optimization  
algorithms are found in Section 5. Our conclusions and 
future scope of our research are presented in Section 6.

The original SBO algorithm
	 The SBO algorithm starts by creating a  
population of random uniform distribution, through the 
consideration of both the lower and upper limit parameters.  
After that, each position is defined as a dimensional 
vector of the parameters, which must be optimized. The  
probability of such defines the attractiveness of the bower. 
A female satin bower bird selects a bower (nest) based 
on its probability and is able to calculate the probability of 
each population member through Eqs. (1) and (2), below.

(1)

(2)

	 where NB is the population size of the bower, 
is the fitness value of the ith solution, and f(xi)

 is the 
fitness value of ith bower. To find the position of the 
best bower, the SBO algorithm utilizes the concept of 
elitism, which allows the best solution to be preserved 
at each stage of the optimization process. The SBO 
algorithm replicates the concept of birds building their 
nests using their natural instincts. In the mating season, 

the male satin bower bird uses his natural instincts to 
build and decorate his bower, in an attempt to attract 
female birds. We may infer that the male birds rely upon 
their experience to influence their creative decisions in 
building their bower ; therefore, more experienced birds 
will build more attractive bowers (improving their fitness) 
than less experienced birds. In this work, the best built 
bower (best position) is intended as an elite iteration. 
Since the elite position has the highest fitness, it should 
be able to influence the other positions. The changes  
of each new bower, representing a new position  
determined by the position of the best fit bower (position),  
are calculated according to Eq.(3).

(3)

	 where xi is the ith solution vector (bower), xj is 
determined as the target solution among all solutions in 
the current iteration, j is calculated by the roulette wheel 
procedure, and xik is the kth member of this dimensions. 
xelite indicates the elite position (the best fitness value in 
the current iteration). 

(4)

	 In Eq. (4), λk represents the attraction power of 
the goal bower, shown at intervals of λk∈(0, 1), where 
α is the greatest step size (constant) ; and pj is the  
probability obtained through Eq.(1) employing the goal 
bower at intervals of pj∈(0, 1). 
	 In the mutation process, which occurs at the 
completion of each iteration of the SBO, random changes 
are applied with a certain probability. Random changes 
are then applied to xik ; again, with a certain probability. 
The normal distribution (N) within the mutation process 
is employed through the average of 
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and the  
variance of σ2, as seen in Eqs. (5)-(7).
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(𝑁𝑁) within the mutation process is employed 
through the average of 𝑥𝑥𝑖𝑖𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 and the variance of 
𝜎𝜎2, as seen in Eqs. (5)-(7). 
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The remainder of this paper is organized in six 
sections. Section 2 briefly describes the SBO 
algorithm; Section 3 describes the chaotic maps for 
the SBO; the proposed CSBO approach is detailed 
in Section 4; and comparisons of the CSBO with 
other optimization algorithms are found in Section 5. 
Our conclusions and future scope of our research are 
presented in Section 6. 
2. The original SBO algorithm 

The SBO algorithm starts by creating a 
population of random uniform distribution, through 
the consideration of both the lower and upper limit 
parameters.  After that, each position is defined as a 
dimensional vector of the parameters, which must be 
optimized.  The probability of such defines the 
attractiveness of the bower.  A female satin bower 
bird selects a bower ( nest)  based on its probability 
and is able to calculate the probability of each 
population member through Eqs. (1) and (2), below. 
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where 𝑁𝑁𝑁𝑁 is the population size of the bower, fiti is 
the fitness value of the ith solution, and 𝑓𝑓(𝑥𝑥𝑖𝑖) is the 
fitness value of ith bower. To find the position of the 
best bower, the SBO algorithm utilizes the concept of 
elitism, which allows the best solution to be 
preserved at each stage of the optimization process. 
The SBO algorithm replicates the concept of birds 
building their nests using their natural instincts. In the 
mating season, the male satin bower bird uses his 
natural instincts to build and decorate his bower, in 
an attempt to attract female birds. We may infer that 
the male birds rely upon their experience to influence 
their creative decisions in building their bower; 
therefore, more experienced birds will build more 

attractive bowers (improving their fitness) than less 
experienced birds. In this work, the best built bower 
(best position) is intended as an elite iteration. Since 
the elite position has the highest fitness, it should be 
able to influence the other positions. The changes of 
each new bower, representing a new position 
determined by the position of the best fit bower 
(position), are 
ca lcu la ted accord ing to Eq. (3 ).      
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where 𝑥𝑥𝑖𝑖  is the ith solution vector (bower), 𝑥𝑥𝑗𝑗  is 
determined as the target solution among all solutions 
in the current iteration, 𝑗𝑗 is calculated by the roulette 
wheel procedure, and 𝑥𝑥𝑖𝑖𝑖𝑖  is the kth member of this 
dimensions.  𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  indicates the elite position ( the 
best fitness value in the current iteration).   
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In Eq. (4), 𝜆𝜆𝑘𝑘 represents the attraction power of the 
goal bower, shown at intervals of 𝜆𝜆𝑘𝑘 ∈ (0, 1), 
where 𝛼𝛼 is the greatest step size (constant); and 𝑝𝑝𝑗𝑗  
is the probability obtained through Eq.(1) employing 
the goal bower at intervals of 𝑝𝑝𝑗𝑗 ∈ (0, 1).  
In the mutation process, which occurs at the 
completion of each iteration of the SBO, random 
changes are applied with a certain probability. 
Random changes are then applied to 𝑥𝑥𝑖𝑖𝑖𝑖 ; again, 
with a certain probability.  The normal distribution 
(𝑁𝑁) within the mutation process is employed 
through the average of 𝑥𝑥𝑖𝑖𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 and the variance of 
𝜎𝜎2, as seen in Eqs. (5)-(7). 
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	 where σ is a proportion of space width, and 
varmin and varmax are the lower and upper bounds 
assigned to the variables, respectively. The value 
of the parameter is the z percent of the difference  
between the lower and upper limit, which is variable. 
In the last of stage of each iteration, the newly formed 
population and the initial population are evaluated, 
and all populations are combined and sorted by their  
fitness values. A new population is then created according  
to the previously defined number, while the others are 
rejected.

Chaotic maps for the SBO
	 Chaos, as a kind of dynamic behavior within 
a nonlinear chaotic time series, has raised enormous 
interest in fields such as scientific applications and  
engineering systems; which have included numerical  
simulation, chaos control, synchronization, pattern 
recognition, optimization theory, as well as additional 
nonlinear sciences. In random-based optimization  
algorithms, methods employing chaotic variables 
rather than random variables are referred to as chaotic  
optimization algorithms (COA) (Gandomi et al., 2013). 
Due to the non-repetitiveness of chaotic behavior, the 
algorithm is capable of carrying out overall searches 
at higher speeds than stochastic searches, which are  
dependent upon their probabilities (Hatamlou et al., 2011). 
One-dimensional, non-invertible maps are the simplest 
systems capable of generating the desired chaotic motion 
(Xu et al., 2013).

The proposed CSBO approach
	 This section presents a novel Chaotic Satin 
Bowerbird Optimization algorithm called the CSBO, which 
replaces the main parameter and embeds chaos into the 
existing SBO. While SBOs possess good convergence 
rates, they still lack the ability to sufficiently find the global 
optima, which in turn affects the convergence rate of the 
algorithm. In order to reduce this effect and to improve 
its efficiency, the concept of chaos was introduced into 

the SBO algorithm. 

	 Chaotic maps are imbedded into the SBO to 
improve the algorithm’s solution quality. One of the main 
parameters of the SBO is the greatest step size (α), which 
remains a constant parameter. Here, this value (α) is 
replaced with chaotic maps in an attempt to improve the 
performance of the SBO. Upon implementation, chaotic 
maps are normalized between 0 and 1. Furthermore, 
the parameter of α, determined through Eq. (4), is  
modified by the chaotic maps through the following  
equation, Eq. (8).

(8)

	 Where Ct+1 represents the different chaotic 
variables, t is the current iteration (t=1, 2, 3,...m),  
m represents the maximum iteration number, and NB is 
the number of bowers. Eq. (8) produces a design point, 
from Eq. (3), which uses the different chaotic variables 
derived from the chaotic maps, with different initial  
values.	  

	 The pseudo-code of the CSBO algorithm is  
presented in Algorithm 1. In the first step, the bower  
population within the search space is initialized randomly. 
After which, the parameters of the CSBO algorithm 
involved in controlling the exploration and exploitation 
mechanisms, specifically the NB, P, Z, σ, and α ; are 
initialized similarly to the SBO. In the second step, the 
fitness function values of all bowers are initialized in the 
search space and evaluated using the various standard 
benchmark functions. The lower fitness value is assumed 
to be elite (the best fitness function value). The chaotic 
number of the chaotic map is initialized to adjust parameter  
α of the SBO. In the third step, the CSBO algorithm 
runs sequentially, in which all bowers will update their  
positions, resulting in the first position as the optimal  
solution. The value of parameter α is also updated along 
with the course of each iteration through Eq. (8), where 
mod(t, NB-1)=0 ; t ; is the current iteration, and NB 
is the population size (Algorithm 1, line 19). In the final 
step, at the end of the last iteration, the best search agent 
will be considered as the most optimal solution by the 
CSBO algorithm.

where 𝜎𝜎 is a proportion of space width, and 
var𝑚𝑚𝑚𝑚𝑚𝑚 and var𝑚𝑚𝑚𝑚𝑚𝑚 are the lower and upper 
bounds assigned to the variables, respectively. The 
value of the 𝑍𝑍 parameter is the percent of the 
difference between the lower and upper limit, which 
is variable. In the last of stage of each iteration, the 
newly formed population and the initial population are 
evaluated, and all populations are combined and 
sorted by their fitness values. A new population is 
then created according to the previously defined 
number, while the others are rejected. 
3. Chaotic maps for the SBO 
Chaos, as a kind of dynamic behavior within a 
nonlinear chaotic time series, has raised enormous 
interest in fields such as scientific applications and 
engineering systems; which have included numerical 
simulation, chaos control, synchronization, pattern 
recognition, optimization theory, as well as additional 
nonlinear sciences. In random-based optimization 
algorithms, methods employing chaotic variables 
rather than random variables are referred to as 
chaotic optimization algorithms (COA) (Gandomi et 
al., 2013). Due to the non-repetitiveness of chaotic 
behavior, the algorithm is capable of carrying out 
overall searches at higher speeds than stochastic 
searches, which are dependent upon their 
probabilities (Hatamlou, Abdullah, & Hatamlou, 
2011). One-dimensional, non-invertible maps are the 
simplest systems capable of generating the desired 
chaotic motion (Xu, Wang, Zhang, & Liang, 2013). 
4. The proposed CSBO approach 
This section presents a novel Chaotic Satin 
Bowerbird Optimization algorithm called the CSBO, 
which replaces the main parameter and embeds 
chaos into the existing SBO.  While SBOs possess 
good convergence rates, they still lack the ability to 
sufficiently find the global optima, which in turn 
affects the convergence rate of the algorithm.  In 
order to reduce this effect and to improve its 

efficiency, the concept of chaos was introduced into 
the SBO algorithm.  
Chaotic maps are imbedded into the SBO to improve 
the algorithm’s solution quality. One of the main 
parameters of the SBO is the greatest step size (𝛼𝛼), 
which remains a constant parameter. Here, this value 
(𝛼𝛼)  is replaced with chaotic maps in an attempt to 
improve the performance of the SBO.  U p o n 
im p l e m e n t a t i o n ,  chaotic maps are normalized 
between 0 and 1.  Furthermore, the parameter of 𝛼𝛼, 
determined through Eq. (4), is modified by the chaotic 
maps through the following equation, Eq. (8). 
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Where 𝑐𝑐𝑡𝑡+1 represents the different chaotic 
variables, 𝑡𝑡 is the current iteration (𝑡𝑡 =
 1, 2, 3, … 𝑚𝑚), 𝑚𝑚 represents the maximum 
iteration number, and 𝑁𝑁𝑁𝑁 is the number of bowers. 
Eq. (8) produces a design point 𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 , from Eq. (3), 
which uses the different chaotic variables derived 
from the chaotic maps, with different initial values.   
The pseudo-code of the CSBO algorithm is 
presented in Algorithm 1. In the first step, the bower 
population within the search space is initialized 
randomly. After which, the parameters of the CSBO 
algorithm involved in controlling the exploration and 
exploitation mechanisms, specifically the 𝑁𝑁𝐵𝐵, 𝑃𝑃, 
𝑍𝑍, 𝜎𝜎, and 𝛼𝛼; are initialized similarly to the SBO. In 
the second step, the fitness function values of all 
bowers are initialized in the search space and 
evaluated using the various standard benchmark 
functions. The lower fitness value is assumed to be 
elite (the best fitness function value). The chaotic 
number of the chaotic map is initialized to adjust 
parameter 𝛼𝛼 of the SBO. In the third step, the CSBO 
algorithm runs sequentially, in which all bowers will 

The remainder of this paper is organized in six 
sections. Section 2 briefly describes the SBO 
algorithm; Section 3 describes the chaotic maps for 
the SBO; the proposed CSBO approach is detailed 
in Section 4; and comparisons of the CSBO with 
other optimization algorithms are found in Section 5. 
Our conclusions and future scope of our research are 
presented in Section 6. 
2. The original SBO algorithm 

The SBO algorithm starts by creating a 
population of random uniform distribution, through 
the consideration of both the lower and upper limit 
parameters.  After that, each position is defined as a 
dimensional vector of the parameters, which must be 
optimized.  The probability of such defines the 
attractiveness of the bower.  A female satin bower 
bird selects a bower ( nest)  based on its probability 
and is able to calculate the probability of each 
population member through Eqs. (1) and (2), below. 

 =

= NB

1
fit

fitProb
n n

i
i ,                                           (1) 







+


+

0)(,)(1

0)(,
)(1

1
fit

ii

i
ii

xfxf

xf
xf  ,                              (2) 

where 𝑁𝑁𝑁𝑁 is the population size of the bower, fiti is 
the fitness value of the ith solution, and 𝑓𝑓(𝑥𝑥𝑖𝑖) is the 
fitness value of ith bower. To find the position of the 
best bower, the SBO algorithm utilizes the concept of 
elitism, which allows the best solution to be 
preserved at each stage of the optimization process. 
The SBO algorithm replicates the concept of birds 
building their nests using their natural instincts. In the 
mating season, the male satin bower bird uses his 
natural instincts to build and decorate his bower, in 
an attempt to attract female birds. We may infer that 
the male birds rely upon their experience to influence 
their creative decisions in building their bower; 
therefore, more experienced birds will build more 

attractive bowers (improving their fitness) than less 
experienced birds. In this work, the best built bower 
(best position) is intended as an elite iteration. Since 
the elite position has the highest fitness, it should be 
able to influence the other positions. The changes of 
each new bower, representing a new position 
determined by the position of the best fit bower 
(position), are 
ca lcu la ted accord ing to Eq. (3 ).      
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where 𝑥𝑥𝑖𝑖  is the ith solution vector (bower), 𝑥𝑥𝑗𝑗  is 
determined as the target solution among all solutions 
in the current iteration, 𝑗𝑗 is calculated by the roulette 
wheel procedure, and 𝑥𝑥𝑖𝑖𝑖𝑖  is the kth member of this 
dimensions.  𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  indicates the elite position ( the 
best fitness value in the current iteration).   
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In Eq. (4), 𝜆𝜆𝑘𝑘 represents the attraction power of the 
goal bower, shown at intervals of 𝜆𝜆𝑘𝑘 ∈ (0, 1), 
where 𝛼𝛼 is the greatest step size (constant); and 𝑝𝑝𝑗𝑗  
is the probability obtained through Eq.(1) employing 
the goal bower at intervals of 𝑝𝑝𝑗𝑗 ∈ (0, 1).  
In the mutation process, which occurs at the 
completion of each iteration of the SBO, random 
changes are applied with a certain probability. 
Random changes are then applied to 𝑥𝑥𝑖𝑖𝑖𝑖 ; again, 
with a certain probability.  The normal distribution 
(𝑁𝑁) within the mutation process is employed 
through the average of 𝑥𝑥𝑖𝑖𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 and the variance of 
𝜎𝜎2, as seen in Eqs. (5)-(7). 
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Experiment results and discussion
	 In this paper, our experiments were coded in 
MATLAB R2016a, 64 bit, and run on a desktop computer 
with an Intel® Core™ i7-6770HQ processor, 8.00GB  
of RAM, 500GB of HD, and a Microsoft Windows 10 
Professional 64 bit Operating System. Moreover, the  
average objective function values (“Avg.Obj”) and  
standard deviation of the fitness function values (“Std.
Dev”) of all runs were recorded. The “Avg.Obj” and “Std.
Dev” were the two performance metrics used to assess 
the performance of the algorithms.

	 In this paper, the experiment sets on optimization  
benchmark problems were implemented to verify the  
per formance of  the proposed meta-heur is t ic  
CSBO method. Moreover, the CEC2014 (Liang  
et al . , 2014)  test suite was selected for the  
performance evaluation and statistical comparison of the 
CSBO in the experiments evaluating the performance 
of the proposed CSBO algorithm in comparison to other 
meta-heuristic algorithms. Note that all experiments were 
performed on the same PC, with the same specifications.

Algorithm 1	 The CSBO algorithm.

1: Initialize the population size of bowers (NB), greatest step size (α), mutation probability (P), percentage of the difference between the upper 
and lower limits (Z), proportion of space width (σ) and NFEs=0
2: Generate the population Xi=(i=1, 2, 3,..., N) of N bowers
3: For i=1 to N Do
4: Evaluate the fitness value of all bowers f(Xi)
5: The best bower (Xbest) and assume it as elite
6: NFEs=NFEs + NFEs that is consumed by bower
7: End for
// The stage of CSBO
8: Initial iterations t=1
9: Generate the chaotic sequences ct

1 ∈ (0,1), the description in Section 3  (1)

10: While (NFEs ≥ max_NFEs) Do
11: For k=1 to N Do
12: Calculate the probability (P) of bowers using Eqs. (1) and (2)   
13: End for
14: //Generate a new bower (Xi

t+1)
15: For i=1 to N Do
16: For k=1 to D (all element (D) of bower) Do 
17: Select one bower (XJ

t), where (XJ
t) is random using roulette wheel selection

18: //Calculate step size (λk)
19: If mod(t, N-1)=0 Then  (2)

20: Calculate step size (λk) using Eq. (8)  (3)

21: Else
22: Calculate step size (λk) using Eq. (4)
23: End if
24: Update the position of bower (Xi

t+1) using Eq. (3)
25: //Mutation
26: If rand ≤ P Then 
27: Update the position of bower (Xi

t+1) using Eq. (6)
28: End if
29: End for
30: Evaluate the fitness value of bower f(Xi

t+1), NFEs=NFEs + 1
31: End for
32: Sorted bower (XN) and f(XN) by the fitness values
33: Update elite (Xbest) if a bower becomes fitter than the elite
34: t=t + 1
35: End while
36: Output the global best fitness value of bower (Xbest)

Note: The differences between the SBO and CSBO are indicated with lines marked with the symbol 


(.).
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	 1. the performance assessment of CSBO with 
different chaotic maps
	 Within the experiment results, the CSBOs  
utilized the Chebyshev, Circle, Gauss/Mouse, Iterative, 
Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent 
maps (Gandomi et al., 2013). The CSBOs were capable 
of significantly improving the solution quality through the 
use of chaotic maps. Adjustments of the main parameter 
α were implemented with the various chaotic maps, as 
seen in Section 4. It is clear that the number of problems in  
which better average objective fitness values were obtained  
by the basic SBO combined with the Tent map, CSBO 
(Tent map), proving to be superior to all other algorithms. 
Further detailed testing is reported in Section 5.2.

	 2. Comparison of the CSBO with other  
optimization algorithms
	 To prove the superiority of the proposed CSBO, 
we conducted comparisons of benchmark problems with 
11 well-known algorithms; Crow Search Algorithm (CSA) 
(Askarzadeh, 2016)we evaluate a novel self-adaptive 
and auto-constructive metaheuristic called Drone Squad-
ron Optimization (DSO, Firefly Algorithm (FA) (Yang, 
2010), Krill Herd algorithm (KH) (Hossein, 2012), Multi-
Verse Optimization (MVO) (Mirjalili et al., 2016), Whale  
Optimization Algorithm (WOA) (Mirjalili and Lewis, 2016), 
Satin Bowerbird Optimizer (SBO), Chaotic Crow Search 
Algorithm (CCSA), Firefly Algorithm with Chaos (CFA), 
Chaotic Krill Herd algorithm (CKH), Chaotic Multi-Verse 
Optimization (CMVO), and Chaotic Whale Optimization  
Algorithm (CWOA). Thus, in this paper, SBO was  
considered to be the basic method. The parameter  
settings for each algorithm in all experiments are  
shown in sub Section 5.2.1.

		  2.1 Parameter settings for experiments

		  We conducted a wide range of tests on the 
proposed algorithm, benchmarking the performance of the 
CSBO. Comparisons were made of 11 existing algorithms 
on 30 benchmark functions, in CEC2014. With a fixed 
population size of 100 at each run, the benchmark function 
test problems were executed with 30-D and 50-D, where 
D is the dimension of the function for all experiments. The 
experiments were run more than 100 times, in which the 
maximum number of functions evaluated (NFEs) were 

set at 3.0E+5 and 5.0E+5, respectively. The other main 
parameters are presented in Table 1.

Table 1	 Parameters settings.

# Chaotic map Parameters

CSA - The awareness probability of crow 
AP=0.1, and the flight length of crow fl=2CCSA Circle map

FA -
The light absorption coefficient=1/L, and 
the attractiveness coefficient=1

CFA
Sinusoidal 
map, Gauss/
mouse map

The light absorption 
coefficient=Sinusoidal map, and the 
attractiveness coefficient=Gauss/mouse 
map

KH - The foraging speed V
f
=0.02, the maxi-

mum diffusion speed Dmax=0.005,  
the maximum induced speed Nmax=0.01CKH Sine map

MVO - The wormhole existence probability 
WEP

max
=1, WEP

min
=0.2, r

1
, r

2
, r

3
 and r

4
 

are random numbers in [0, 1], and p=6CMVO Circle map

WOA - A and C are coefficient vectors, a is 
linearly decreased from 2 to 0, l is a 
random number in [-1, 1], and p is a 
random number in [0, 1]

CWOA Tent map

SBO - The percentage of the difference 
between the upper and lower limits () 
was considered to be 0.02, the mutation 
probability () was 0.05, and the greatest 
step size () was 0.94

CSBO Tent map

		  2.2 Numerical results and graphical  
analysis

		  In this Section, we present the numerical 
results, and graphical analysis and evaluation of the CSBO 
and other optimization algorithms based on the benchmark 
functions. We further classified the qualitative analyses 
into four function problems: the Unimodal function, the 
Simple multimodal function, the Hybrid function, and the 
Composition function. Tables 2-7 show the statistical 
analysis of the comparative simulation results between 
the CSBO and the other algorithms. The four function 
problems outlined are described as follows: 

		  (a)	 Unimodal function (f
1
-f

3
): Table 2 presents  

the statistical analysis of the simulation 
results and performs a comparison  
between the CSBO and the other  
optimization algorithms. The CSBO 
algorithm outperformed the comparative  
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algorithms in our statistical tests. 
Within the 30-dimensional problems, 
the CSBO generated better simulation  
results in the functions f

1
 and f

2
. In 

cases of the 50-D problems, the 
CSBO proved superior to all other 
algorithms in the f

1
. However, for  

functions f
2
 and f

3
, the CSBO ranked 3rd 

out of 12 algorithms. Summarizing the 
overall rank of the 30-D set, the CSBO 
algorithm ranked first (5.0).

		  (b)	 Simple multimodal function (f
4-
f
16
): In 

the results for the 30-D problems, 
shown in Table 3, the CSBO algorithm 
ranked first (f

4
, f

10
-f

16
) in eight out of 13 

benchmark functions. Similar results 
were achieved in the f

13
 functions for FA, 

and f
14
 functions for SBO with the CFA 

algorithms. In the 50-D problem cases, 
shown in Table 4, the CSBO algorithm 
was significantly better than or at least 
similar in f

4
, f

10
-f

14
, and f

16
 functions in 

seven out of 13 benchmark functions. 
The overall rankings (summarized) 
for the 30-D set found that the CSBO 
algorithm ranked first (26.0).

		  (c)	 Hybrid function (f
17
-f

22
): Table 5, in the 

case of the 30-D problems, the superior-
ity of the CSBO was lost ; and proved 
inferior to CKH in f

18
, CMVO and MVO 

on f
20
, and FA and CFA in f

22
. The 

CSBO algorithm did, however, rank 
first in three out of the six benchmark  
functions ; f

17
, f

19
, and f

21
. Within the 

50-D set, the CSBO was bettered only 
by the CFA on f

22
. In all other areas, 

the CSBO performed significantly bet-
ter than the comparative algorithms, 
ranking first in five out of six benchmark 
functions (f

17
-f

21
 benchmark functions). 

An overall rank summary for the 30-D 
problems found that the CSBO algo-
rithm ranked first at 8.0. 

		  (d)	 Composition function (f
23
-f

30
): Table 6, 

within the 30-D problem set, the CSBO 
ranked less than the CKH and KH on 
f
23
-f

25
, and the CFA, CMVO, MVO, FA, 

CWOA, and WOA algorithms on f
28
. 

However, the CSBO algorithm ranked 
first in f

26
, f

27
, f

29
, and f

30
 (four out of 

eight benchmark functions). Within the 
50-D problem set, Table 7, the CSBO’s 
performance was inferior to the CKH in 
f
23
 ; the CWOA, WOA, and CKH on f

24
 ; 

the CKH, CFA, KH, FA, CMVO, CWOA, 
and WOA in f

25
 ; the CWOA and WOA 

on f
26
 ; and to the CFA, CMVO, MVO, 

FA, CWOA, and WOA in f
28
. The CSBO 

ranked first in three out of eight cases ; 
the f

27
, f

29
, and f

30
 benchmark functions). 

The overall rank summary for the 30-D 
problems ranked the CSBO algorithm 
ranks first (23.0), followed by the CFA 
algorithm (second, at 24.5), and the 
CKH algorithm (third, at 32.0). Within  
the 50-D problem set, the CSBO  
algorithm ranks first (27.5).

		  The graphical analyses, Figures 1 and 2, 
display the line graphs of the convergences of all the 12 
optimization algorithms, and the 8 functions (f

1, f4, f10, f11, f17, 

f21, f29, f30
) within the 30-D and 50-D problem set. The CSBO 

demonstrated better performance in escaping from the 
local optimum, as well as better search accuracy than 
the 11 other methods. Moreover, the other algorithms 
did not find their global optimal value in all of the runs. 
The values shown in these figures represent the average 
function optimum achieved from each benchmark function, 
Tables 2-7.

		  In summary, the proposed CSBO algorithm 
achieves better search performance, stable search ability, 
and a stronger ability to escape from local optimum solu-
tions than all comparative algorithms, presented in Figures 
1 and 2 and Tables 2-7. The CSBO method proved to 
be very efficient for numerical optimization problems. 
Moreover, the analyses of the non-parametric Wilcoxon’s 
rank sum test, Section 5.2.3 and Section 5.2.4 ; and the 
Friedman rank test proved the performance of the CSBO 
algorithm to be superior to all other algorithms tested.
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		  2.3 The non-parametric Wilcoxon’s rank sum 
test

		  In order to evaluate the performance of 
proposed CSBO algorithm, we employed the Wilcoxon’s 
rank sum test (Frank Wilcoxon, 1945) to determine the 
statistical difference of the results achieved by each  
algorithm. The test was conducted for the results obtained 
by all algorithms, shown in Tables 2-7, N/A indicates “not 
applicable”, denoting the best objective function value in 
this current function. In the comparison of the CSBO and 
other optimization algorithms, it is generally considered 
that a p-Value of less than 0.05 indicates that the result 
achieved by the algorithm is statistically significant, and 
not obtained by chance. The best results are highlighted 
in bold face, and the p-Values (greater than 0.05) are 
underlined. 

		  The comparison summaries of the proposed 
CSBO and other optimization algorithms in the underlined 
30-D and 50-D test problems are presented in Tables 2-7. 

From these tables, it is clear that the number of problems 
in which better average objective fitness values were 
obtained by the CSBO algorithm proved it to be superior 
to all other algorithms. However, the CSBO results are 
believed to be biased.

		  2.4 Analysis based on the Friedman rank 
test

		  The Friedman rank analyses, present each 
algorithm was ranked according to their performance using 
an average Friedman rank competition ranking scheme. 
In competition ranking, algorithms are put in the same 
rank if their performances are the same. 

		  Therefore, Figure 3 provides the ranks 
of 12 optimization algorithms and the overall rank for 
30 benchmark functions (Tables 2-7) based on the 
cases of 30-D (Figure 3a) and 50-D (Figure 3b) mean  
performances. Using the overall ranks, we can note that 
the CSBO performs much better than the other algorithms.

Table 2	 Unimodal function: comparison of the CSBO with other optimization algorithms for 30-D and 50-D problems. 
The best Avg.Obj results among the 12 algorithms are shown in bold. 

Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

30-D

f
1

Avg.Obj 1.6009E+09 2.3063E+07 2.8339E+08 5.0511E+06 3.2328E+07 2.9545E+06 9.5290E+08 4.6221E+06 1.8912E+07 3.4549E+06 2.7226E+07 3.7548E+05

Std. dev. 2.3173E+08 7.5188E+06 9.1114E+07 2.0339E+05 1.4290E+07 8.6304E+05 1.9327E+08 2.4755E+06 5.5471E+06 1.4844E+06 1.1623E+07 2.0571E+05

p-Value 1.7555E-06 7.5569E-10 7.5569E-10 6.6298E-10 7.5569E-10 7.4197E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 7.0 10.0 5.0 9.0 2.0 11.0 4.0 6.0 3.0 8.0 1.0

f
2

Avg.Obj 9.9432E+10 1.1342E+08 1.5577E+10 2.8988E+04 3.0724E+06 5.3763E+05 7.2603E+10 5.5067E+06 2.8004E+04 1.7040E+04 3.0050E+06 1.1190E+04

Std. dev. 7.3771E+09 1.2290E+08 5.6399E+09 1.2094E+04 2.2802E+06 7.8532E+04 1.0275E+10 7.7335E+05 1.7478E+04 1.0766E+04 6.8454E+06 5.4370E+03

p-Value 1.3371E-09 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 9.0 10.0 4.0 7.0 5.0 11.0 8.0 3.0 2.0 6.0 1.0

f
3

Avg.Obj 1.1438E+05 2.4932E+04 8.2161E+04 1.1184E+03 3.7410E+04 1.1468E+04 8.9263E+04 3.4921E+03 6.0446E+04 4.2596E+02 3.4955E+04 3.0903E+03

Std. dev. 1.8373E+04 4.1979E+03 2.4564E+04 3.0058E+02 2.4787E+04 6.2529E+03 2.9399E-11 1.7148E+03 1.3237E+04 4.0623E+01 2.2968E+04 2.9297E+03

p-Value 1.6710E-06 7.5569E-10 1.3025E-09 7.5569E-10 7.5569E-10 7.4669E-10 1.5375E-12 7.5569E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10

Rank 12.0 6.0 10.0 2.0 8.0 5.0 11.0 4.0 9.0 1.0 7.0 3.0

Overall Rank 36.0 22.0 30.0 11.0 24.0 12.0 33.0 16.0 18.0 6.0 21.0 5.0

50-D

f
1

Avg.Obj 7.8524E+09 3.7362E+07 6.2050E+08 7.5993E+06 3.4749E+07 4.4682E+06 3.1273E+09 9.2384E+06 1.2528E+07 7.0843E+06 3.1180E+07 1.3418E+06

Std. dev. 1.8074E+09 1.1120E+07 3.4120E+08 1.7292E+06 1.2664E+07 1.0064E+06 4.0481E+08 3.0593E+06 4.5995E+06 1.9426E+06 1.1635E+07 3.2025E+05

p-Value 2.6254E-09 7.5569E-10 7.5569E-10 7.5228E-10 7.5569E-10 7.4652E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 9.0 10.0 4.0 8.0 2.0 11.0 5.0 6.0 3.0 7.0 1.0



J Sci Technol MSUTanachapong Wangkhamhan, Anongnart Rotjanakorn Wangkhamhan98

Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

30-D

f
2

Avg.Obj 1.9461E+11 3.0454E+09 6.3940E+10 6.8463E+04 2.0063E+07 7.8346E+06 1.7358E+11 4.8625E+06 1.9698E+05 3.1696E+04 1.5655E+07 1.9206E+05

Std. dev. 1.1995E+09 1.2349E+09 1.3058E+10 1.5202E+04 1.4047E+07 7.0536E+05 1.5131E+10 4.7566E+05 1.0358E+05 1.0989E+04 1.1330E+07 2.7752E+04

p-Value 1.4321E-10 7.5569E-10 7.5569E-10 9.2946E-03 7.5569E-10 7.5569E-10 8.5342E-10 7.5569E-10 7.5569E-10 N/A 7.5569E-10 5.9268E-06

Rank 12.0 9.0 10.0 2.0 8.0 6.0 11.0 5.0 4.0 1.0 7.0 3.0

f
3

Avg.Obj 3.8902E+05 5.7112E+04 1.5358E+05 4.4193E+02 3.9203E+04 7.7316E+03 2.3116E+05 1.4767E+04 9.6525E+04 4.2409E+02 3.4741E+04 1.2720E+03

Std. dev. 1.6679E+05 6.0507E+03 2.4928E+04 3.7252E+01 8.4108E+03 3.5901E+03 3.0561E+04 4.8265E+03 1.7437E+04 3.0203E+01 7.8181E+03 6.1448E+02

p-Value 4.4668E-11 7.5569E-10 7.5569E-10 2.9456E-04 7.5569E-10 7.3711E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10

Rank 12.0 8.0 10.0 2.0 7.0 4.0 11.0 5.0 9.0 1.0 6.0 3.0

Overall rank 36.0 26.0 30.0 8.0 23.0 12.0 33.0 15.0 19.0 5.0 20.0 7.0

Table 3	 Simple Multimodal functions: comparison of the CSBO with other optimization algorithms for 30-D problems. 
The best Avg.Obj results among the 12 algorithms are shown in bold.

Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

30-D

f
4

Avg.Obj 2.3316E+04 5.9775E+02 1.6912E+03 5.0136E+02 5.8132E+02 5.3658E+02 1.2597E+04 5.1262E+02 5.0141E+02 4.9630E+02 5.7865E+02 4.5293E+02

Std. 

dev.
2.5274E+03 3.8802E+01 7.3894E+02 2.5362E+01 5.8743E+01 2.4539E+01 2.3726E+03 2.2069E+01 3.1247E+01 3.3965E+01 4.6182E+01 3.5539E+01

p-Value 1.1101E-09 7.5569E-10 7.5569E-10 7.5399E-10 7.5569E-10 7.4230E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 9.0 10.0 3.0 8.0 6.0 11.0 5.0 4.0 2.0 7.0 1.0

f
5

Avg.Obj 5.2098E+02 5.2094E+02 5.2001E+02 5.2007E+02 5.2032E+02 5.2085E+02 5.2095E+02 5.2094E+02 5.2001E+02 5.2005E+02 5.2020E+02 5.2004E+02

Std. 

dev.
6.3737E-02 4.8568E-02 2.9419E-03 5.3683E-02 1.5986E-01 7.4616E-02 5.6665E-02 4.8739E-02 5.1790E-03 4.0495E-02 1.8728E-01 1.7613E-02

p-Value 7.0957E-07 7.6048E-03 N/A 7.5569E-10 7.5569E-10 5.8601E-09 1.2009E-03 2.8109E-03 N/A 7.5569E-10 7.5569E-10 5.5448E-03

Rank 12.0 9.5 1.5 5.0 7.0 8.0 11.0 9.5 1.5 4.0 6.0 3.0

f
6

Avg.Obj 6.4571E+02 6.1140E+02 6.3583E+02 6.1048E+02 6.3574E+02 6.2847E+02 6.4075E+02 6.0684E+02 6.2093E+02 6.1011E+02 6.3521E+02 6.1978E+02

Std. 

dev.
1.4259E+00 1.9603E+00 2.2431E+00 2.0173E+00 2.7854E+00 1.2209E+00 1.1875E+00 2.3952E+00 3.1404E+00 2.9034E+00 3.3222E+00 1.0952E+00

p-Value 1.1812E-09 7.5569E-10 7.5569E-10 7.5228E-10 7.5569E-10 7.0596E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10 7.5569E-10 7.0516E-10

Rank 12.0 4.0 10.0 3.0 9.0 7.0 11.0 1.0 6.0 2.0 8.0 5.0

f
7

Avg.Obj 1.5135E+03 7.0294E+02 8.7406E+02 7.0009E+02 7.0101E+02 7.0093E+02 1.3546E+03 7.0105E+02 7.0002E+02 7.0008E+02 7.0090E+02 7.0007E+02

Std. 

dev.
5.0219E+01 1.6586E+00 6.6743E+01 3.3399E-02 6.8074E-02 3.5790E-02 6.6157E+01 6.5845E-03 8.9813E-03 1.0499E-02 1.1995E-01 2.0174E-02

p-Value 3.2718E-01 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10 3.3041E-01

Rank 12.0 9.0 10.0 4.0 7.0 6.0 11.0 8.0 1.0 3.0 5.0 2.0

f
8

Avg.Obj 1.1741E+03 8.5792E+02 9.5934E+02 8.8281E+02 9.8531E+02 9.4291E+02 1.1696E+03 8.4189E+02 9.1184E+02 8.8182E+02 9.8134E+02 8.8059E+02

Std. 

dev.
8.8788E+00 8.4674E+00 2.2284E+01 2.0580E+01 3.9847E+01 2.6164E+01 1.5480E+01 1.0384E+01 2.3041E+01 2.0337E+01 3.7717E+01 5.0253E+00

p-Value 6.0845E-08 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 8.8418E-03 N/A 7.5569E-10 7.5569E-10 7.5569E-10 2.1636E-03

Rank 12.0 2.0 8.0 5.0 10.0 7.0 11.0 1.0 6.0 4.0 9.0 3.0

f
9

Avg.Obj 1.3572E+03 9.6453E+02 1.0919E+03 1.0226E+03 1.1364E+03 1.0877E+03 1.3393E+03 9.5379E+02 1.0218E+03 1.0206E+03 1.1238E+03 1.0177E+03

Std. 

dev.
9.3912E+00 1.3016E+01 2.3571E+01 3.4674E+00 6.0934E+01 2.8292E+01 2.2771E+01 1.6183E+01 2.0375E+01 2.9034E+01 5.6711E+01 3.1464E-03

p-Value 2.2503E-07 7.5569E-02 7.5569E-10 5.1059E-10 7.5569E-10 7.5569E-10 8.3138E-02 N/A 7.5569E-10 7.5569E-10 7.5569E-10 2.1636E-03

Rank 12.0 2.0 8.0 6.0 10.0 7.0 11.0 1.0 5.0 4.0 9.0 3.0

Table 2	 Unimodal function: comparison of the CSBO with other optimization algorithms for 30-D and 50-D problems. 
The best Avg.Obj results among the 12 algorithms are shown in bold. (cont.)
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Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

30-D

f
10

Avg.Obj 8.6963E+03 3.2277E+03 4.7968E+03 3.9748E+03 5.0048E+03 3.8015E+03 8.1082E+03 3.1170E+03 4.4174E+03 3.9213E+03 4.9901E+03 3.0895E+03

Std. 

dev.
3.5537E+02 5.2523E+02 6.5854E+02 6.9957E+02 6.3017E+02 4.9797E+02 3.4483E+02 5.0187E+02 7.8190E+02 7.3778E+02 6.1531E+02 2.4836E+02

p-Value 2.1093E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 3.7850E-09 7.5552E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 3.0 8.0 6.0 10.0 4.0 11.0 2.0 7.0 5.0 9.0 1.0

f
 11

Avg.Obj 9.4018E+03 4.0725E+03 5.4627E+03 4.3587E+03 5.9709E+03 5.0707E+03 8.5721E+03 4.0597E+03 5.0243E+03 4293.74917 5.8132E+03 3.9633E+03

Std. 

dev.
3.4139E+02 4.0912E+02 6.7747E+02 6.5400E+02 9.5793E+02 5.8713E+02 2.5112E+02 4.8890E+02 5.3995E+02 6.7703E+02 7.3240E+02 1.0387E+02

p-Value 4.2323E-10 7.5569E-10 7.5569E-10 7.5484E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 3.0 8.0 5.0 10.0 7.0 11.0 2.0 6.0 4.0 9.0 1.0

f
12

Avg.Obj 1.2034E+03 1.2025E+03 1.2007E+03 1.2003E+03 1.2016E+03 1.2002E+03 1.2027E+03 1.2003E+03 1.2003E+03 1.2003E+03 1.2016E+03 1.2001E+03

Std. 

dev.
4.1543E-01 2.5325E-01 2.7726E-01 2.1034E-01 4.1465E-01 2.1980E-02 3.0415E-01 3.7214E-02 1.6224E-01 1.3379E-01 4.5029E-01 5.8079E-02

p-Value 5.0452E-09 7.5569E-10 7.5569E-10 7.5484E-10 7.5569E-10 7.5484E-05 2.1002E-09 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 10.0 7.0 4.5 8.5 2.0 11.0 4.5 4.5 4.5 8.5 1.0

f
13

Avg.Obj 1.3100E+03 1.3003E+03 1.3036E+03 1.3004E+03 1.3005E+03 1.3005E+03 1.3071E+03 1.3003E+03 1.3004E+03 1.3004E+03 1.3005E+03 1.3003E+03

Std. 

dev.
9.2056E-01 4.7152E-02 7.8677E-01 1.0193E-01 1.1919E-01 1.0454E-01 4.8467E-01 3.8477E-02 7.9592E-02 9.8132E-02 1.3845E-01 5.2780E-02

p-Value 7.7397E-08 N/A 7.5569E-10 7.5569E-10 7.5569E-10 7.4702E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 2.0 10.0 5.0 8.0 8.0 11.0 2.0 5.0 5.0 8.0 2.0

f
14

Avg.Obj 1.6730E+03 1.4003E+03 1.4698E+03 1.4005E+03 1.4003E+03 1.4002E+03 1.6288E+03 1.4002E+03 1.4003E+03 1.4004E+03 1.4003E+03 1.4002E+03

Std. 

dev.
1.1890E+01 4.1027E-02 1.8664E+01 3.0269E-01 5.9385E-02 4.8548E-02 2.5400E+01 2.7460E-02 7.7811E-02 2.9025E-01 1.0815E-01 2.5058E-02

p-Value 5.2113E-09 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A 9.0681E-10 N/A 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 5.5 10.0 9.0 5.5 2.0 11.0 2.0 5.5 8.0 5.5 2.0

f
15

Avg.Obj 1.2050E+06 1.5146E+03 1.5398E+03 1.5105E+03 1.5753E+03 1.5312E+03 2.7359E+05 1.5136E+03 1.5199E+03 1.5101E+03 1.5747E+03 1.5096E+03

Std. 

dev.
5.0473E+05 1.4775E+00 7.9678E+00 1.3555E+00 2.7361E+01 5.8988E+00 8.5609E+03 2.5566E+00 5.0161E+00 1.1168E+00 2.6867E+01 8.8795E-01

p-Value 1.3129E-11 7.5569E-10 7.5569E-10 7.3878E-10 7.5569E-10 6.8129E-10 2.8249E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 5.0 8.0 3.0 10.0 7.0 11.0 4.0 6.0 2.0 9.0 1.0

f
16

Avg.Obj 1.6125E+03 1.6115E+03 1.6128E+03 1.6117E+03 1.6127E+03 1.6122E+03 1.6121E+03 1.6114E+03 1.6125E+03 1.6116E+03 1.6125E+03 1.6113E+03

Std. 

dev.
3.3965E-01 4.2268E-01 3.9383E-01 3.4767E-01 4.3054E-01 5.8897E-01 3.0829E-01 4.5936E-13 4.2138E-01 7.1779E-01 5.4337E-01 7.0681E-01

p-Value 5.7407E-09 7.5569E-10 4.3371E-10 7.5399E-10 1.8355E-04 1.2094E-09 8.0311E-10 1.5375E-12 1.9919E-06 8.0311E-10 3.3508E-06 N/A

Rank 9.0 3.0 12.0 5.0 11.0 7.0 6.0 2.0 9.0 4.0 9.0 1.0

Overall rank 153.0 67.0 110.5 63.5 114.0 78.0 138.0 44.0 66.5 51.5 102.0 26.0

Table 3	 Simple Multimodal functions: comparison of the CSBO with other optimization algorithms for 30-D problems. 
The best Avg.Obj results among the 12 algorithms are shown in bold. (cont.)
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Table 4	 Simple Multimodal functions: comparison of the CSBO with other optimization algorithms for 50-D problems. 
The best Avg.Obj results among the 12 algorithms are shown in bold.

Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

50-D

f
4

Avg.Obj 5.8462E+04 1.0308E+03 1.0766E+04 5.3067E+02 6.5999E+02 5.9715E+02 4.7366E+04 5.0637E+02 5.4695E+02 5.0755E+02 6.4454E+02 4.9020E+02

Std. 

dev.
2.1042E+03 1.3299E+02 3.3915E+03 5.1473E+00 6.5643E+01 4.4552E+01 6.7688E+03 1.7025E+01 4.4424E+01 2.8943E+01 6.3439E+01 4.4169E+01

p-Value 4.2507E-11 7.5569E-10 7.5569E-10 2.1636E-10 7.5569E-10 7.4584E-10 2.5085E-09 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 9.0 10.0 4.0 8.0 6.0 11.0 2.0 5.0 3.0 7.0 1.0

f
5

Avg.Obj 5.2117E+02 5.2113E+02 5.2002E+02 5.2014E+02 5.2046E+02 5.2105E+02 5.2115E+02 5.2106E+02 5.2000E+02 5.2013E+02 5.2032E+02 5.2011E+02

Std. 

dev.
3.5276E-02 3.8638E-02 3.3088E-03 7.8409E-02 1.5677E-01 3.1402E-02 3.7536E-02 4.1462E-02 9.7675E-04 5.1228E-02 2.1935E-01 2.2968E-13

p-Value 3.3136E-11 7.5569E-10 5.5569E-03 4.3816E-05 7.5569E-10 7.4753E-10 2.5085E-09 7.5569E-10 N/A 7.5569E-10 7.5569E-10 1.5375E-05

Rank 12.0 10.0 2.0 5.0 7.0 8.0 11.0 9.0 1.0 4.0 6.0 3.0

f
6

Avg.Obj 6.7940E+02 6.2784E+02 6.6640E+02 6.3434E+02 6.6549E+02 6.5601E+02 6.7380E+02 6.2730E+02 6.4440E+02 6.2511E+02 6.6442E+02 6.2974E+02

Std. 

dev.
1.9365E+00 2.8436E+00 3.0942E+00 2.0238E+00 3.7860E+00 2.8107E+00 1.4055E+00 2.6007E+00 4.3959E+00 4.6030E+00 5.3037E+00 4.5936E-13

p-Value 1.8756E-11 7.5569E-05 7.5569E-10 6.2597E-10 7.5569E-10 7.5399E-10 7.5569E-10 2.9456E-05 7.5569E-10 N/A 7.5569E-10 1.5375E-05

Rank 12.0 3.0 10.0 5.0 9.0 7.0 11.0 2.0 6.0 1.0 8.0 4.0

f
7

Avg.Obj 2.4704E+03 7.3667E+02 1.3383E+03 7.0019E+02 7.0121E+02 7.0112E+02 2.3664E+03 7.0104E+02 7.0006E+02 7.0011E+02 7.0118E+02 7.0043E+02

Std. 

dev.
3.4407E+01 9.9674E+00 1.4886E+02 4.2986E-02 1.1989E-01 9.7072E-03 1.1796E+02 6.0621E-03 3.0629E-02 2.3081E-02 1.1286E-01 4.1054E-02

p-Value 4.0100E-05 7.5569E-10 7.5569E-10 8.6929E-03 7.5569E-10 7.5569E-10 3.0382E-07 7.5569E-10 N/A 6.9295E-03 7.5569E-10 8.2207E-03

Rank 12.0 9.0 10.0 3.0 8.0 6.0 11.0 5.0 1.0 2.0 7.0 4.0

f
8

Avg.Obj 1.5370E+03 9.5000E+02 1.1606E+03 9.6275E+02 1.1407E+03 1.0999E+03 1.4716E+03 8.9409E+02 1.0454E+03 9.5937E+02 1.1289E+03 1.0343E+03

Std. 

dev.
2.4535E+01 1.8385E+01 3.7446E+01 3.4164E+01 6.4791E+01 3.4908E+01 1.0134E+01 1.8626E+01 2.9780E+01 3.9404E+01 5.9020E+01 6.0118E+00

p-Value 4.0937E-11 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10 7.5569E-10 6.4424E-10

Rank 12.0 2.0 10.0 4.0 9.0 7.0 11.0 1.0 6.0 3.0 8.0 5.0

f
9

Avg.Obj 1.7897E+03 1.0550E+03 1.3628E+03 1.2090E+03 1.3343E+03 1.3185E+03 1.7787E+03 1.0514E+03 1.1664E+03 1.0970E+03 1.3103E+03 1.1893E+03

Std. 

dev.
6.5833E+00 2.0946E+01 3.9892E+01 2.0932E+01 7.6689E+01 3.5148E+01 4.6222E+01 2.3337E+01 4.0233E+01 3.9711E+01 6.6587E+01 3.4428E+00

p-Value 7.5569E-10 7.5569E-10 7.5569E-10 3.4580E-10 7.5569E-10 7.5262E-10 1.2363E-01 N/A 7.5569E-10 7.5569E-10 7.5569E-10 6.2597E-10

Rank 12.0 2.0 10.0 6.0 9.0 8.0 11.0 1.0 4.0 3.0 7.0 5.0

f
10

Avg.Obj 1.5544E+04 6.3038E+03 8.9981E+03 7.0248E+03 8.5387E+03 6.2091E+03 1.4567E+04 6.2982E+03 8.0166E+03 6.6706E+03 8.4090E+03 5.2472E+03

Std. 

dev.
4.5485E+02 7.6119E+02 1.0347E+03 9.9581E+02 1.1006E+03 7.3454E+02 3.3691E+02 6.8874E+02 1.1391E+03 9.1759E+02 1.2410E+03 5.0984E+02

p-Value 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 4.0 10.0 6.0 9.0 2.0 11.0 3.0 7.0 5.0 8.0 1.0

f
 11

Avg.Obj 1.6090E+04 6.8120E+03 9.4698E+03 7.0628E+03 1.0052E+04 8.2681E+03 1.4992E+04 6.1131E+03 7.8356E+03 6.8517E+03 9.5257E+03 6.0896E+03

Std. 

dev.
4.1120E+02 7.7287E+02 1.1157E+03 7.8431E+02 1.2692E+03 7.8569E+02 2.8252E+02 8.1745E+02 1.0576E+03 8.4969E+02 1.3690E+03 9.4643E+01

p-Value 7.6159E-11 7.5569E-10 7.5569E-10 7.5228E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 3.0 8.0 5.0 10.0 7.0 11.0 2.0 6.0 4.0 9.0 1.0
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Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

50-D

f
12

Avg.Obj 1.2043E+03 1.2033E+03 1.2009E+03 1.2004E+03 1.2024E+03 1.2005E+03 1.2036E+03 1.2001E+03 1.2004E+03 1.2004E+03 1.2023E+03 1.2001E+03

Std. 

dev.
4.2839E-01 2.9498E-01 3.6092E-01 2.2307E-01 6.0490E-01 5.2558E-02 3.4745E-01 1.9480E-02 2.4395E-01 1.8684E-01 5.8115E-01 4.2965E-02

p-Value 1.6524E-11 7.5569E-10 7.5569E-10 7.5484E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 10.0 7.0 4.0 9.0 6.0 11.0 1.5 4.0 4.0 8.0 1.5

f
13

Avg.Obj 1.3097E+03 1.3005E+03 1.3053E+03 1.3006E+03 1.3006E+03 1.3006E+03 1.3091E+03 1.3005E+03 1.3005E+03 1.3006E+03 1.3005E+03 1.3004E+03

Std. 

dev.
1.2459E-01 3.4525E-02 5.7142E-01 1.0510E-01 1.0673E-01 6.1996E-02 4.1906E-01 4.4276E-02 7.5928E-02 1.2628E-01 1.1331E-01 5.3808E-02

p-Value 1.4701E-11 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5399E-10 1.2265E-09 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 3.5 10.0 7.5 7.5 7.5 11.0 3.5 3.5 7.5 3.5 1.0

f
14

Avg.Obj 1.8370E+03 1.4004E+03 1.5483E+03 1.4006E+03 1.4004E+03 1.4003E+03 1.7646E+03 1.4003E+03 1.4003E+03 1.4006E+03 1.4003E+03 1.4002E+03

Std. 

dev.
3.7086E+01 2.0015E-01 2.9510E+01 3.8182E-01 8.8102E-02 3.2112E-02 1.6158E+01 2.0301E-02 3.5752E-02 3.9897E-01 4.3883E-02 2.5043E-02

p-Value 5.2761E-11 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5467E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 6.5 10.0 8.5 6.5 3.5 11.0 3.5 3.5 8.5 3.5 1.0

f
15

Avg.Obj 1.6512E+07 1.5926E+03 4.2001E+03 1.5244E+03 1.7616E+03 1.5462E+03 1.1949E+07 1.5221E+03 1.5576E+03 1.5163E+03 1.7588E+03 1.5203E+03

Std. 

dev.
1.9193E+06 2.7541E+01 1.0592E+04 3.9252E+00 7.2849E+01 6.2357E+00 4.0923E+06 2.6775E+00 1.2470E+01 3.9272E+00 6.8699E+01 1.0743E+00

p-Value 3.6528E-11 7.5569E-10 7.5569E-10 5.4142E-10 7.5569E-10 7.4770E-10 2.0979E-11 6.2946E-05 7.5569E-10 N/A 7.5569E-10 2.1636E-02

Rank 12.0 7.0 10.0 4.0 9.0 5.0 11.0 3.0 6.0 1.0 8.0 2.0

f
16

Avg.Obj 1.6223E+03 1.6209E+03 1.6220E+03 1.6210E+03 1.6224E+03 1.6216E+03 1.6218E+03 1.6200E+03 1.6220E+03 1.6210E+03 1.6222E+03 1.6199E+03

Std. 

dev.
3.3958E-01 7.0150E-01 4.1961E-01 6.4453E-01 5.1830E-01 7.1383E-01 3.3830E-01 2.9187E-01 3.1933E-01 6.2692E-01 4.5614E-01 5.8796E-01

p-Value 1.1776E-09 9.0681E-03 2.2571E-09 1.1536E-09 2.9108E-06 1.5164E-08 7.8262E-08 5.5293E-03 9.3460E-10 1.5591E-09 5.1977E-09 N/A

Rank 11.0 3.0 8.5 4.5 12.0 6.0 7.0 2.0 8.5 4.5 10.0 1.0

Overall rank 155.0 72.0 115.5 66.5 113.0 79.0 139.0 38.5 61.5 50.5 93.0 30.5

Table 5	 Hybrid functions: comparison of the CSBO with other optimization algorithms for 30-D and 50-D problems. 
The best Avg.Obj results among the 12 algorithms are shown in bold.

Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

30-D

f
17

Avg.Obj 2.3799E+08 3.8818E+05 1.0118E+07 2.5099E+05 3.5065E+06 8.2220E+05 3.6996E+07 3.4212E+05 1.7306E+06 2.2422E+05 2.6037E+06 9.8969E+04

Std. 

dev.
9.4108E+07 2.6890E+05 6.7400E+06 1.4745E+05 2.3569E+06 2.7776E+05 1.0321E+07 2.0950E+05 1.2565E+06 1.4323E+05 1.4260E+06 7.3983E+04

p-Value 3.2868E-09 7.5569E-10 7.5569E-10 7.5228E-10 7.5569E-10 7.4669E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 5.0 10.0 3.0 9.0 6.0 11.0 4.0 7.0 2.0 8.0 1.0

f
18

Avg.Obj 7.7705E+09 7.9165E+04 2.2474E+07 1.7227E+04 1.2282E+04 4.7063E+03 1.7846E+09 6.5200E+04 3.0415E+03 1.4159E+04 1.0142E+04 3.9436E+03

Std. 

dev.
2.4021E+09 2.3140E+04 9.4741E+07 9.7142E+03 32335.5 3.3311E+03 5.6451E+08 1.5120E+04 1.5712E+03 1.0984E+04 1.8094E+04 2.6935E+03

p-Value 5.8098E-11 7.5569E-10 7.5569E-10 7.5399E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10 2.1579E-03

Rank 12.0 9.0 10.0 7.0 5.0 3.0 11.0 8.0 1.0 6.0 4.0 2.0

Table 4	 Simple Multimodal functions: comparison of the CSBO with other optimization algorithms for 50-D problems. 
The best Avg.Obj results among the 12 algorithms are shown in bold. (cont.)
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Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

30-D

f
19

Avg.Obj 2.7328E+03 1.9162E+03 1.9275E+03 1.9144E+03 1.9442E+03 1.9658E+03 2.2677E+03 1.9159E+03 1.9158E+03 1.9127E+03 1.9431E+03 1.9114E+03

Std. 

dev.
1.0448E+02 7.8577E+00 2.5256E+01 1.3954E+01 37.8 1.6300E+01 5.2296E+01 8.6308E+00 8.5975E+00 1.0784E+01 3.2127E+01 1.8808E+00

p-Value 9.6052E-11 7.5569E-10 7.5569E-10 7.5484E-10 7.5569E-10 6.8144E-10 7.5569E-10 7.5552E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 6.0 7.0 3.0 9.0 10.0 11.0 5.0 4.0 2.0 8.0 1.0

f
20

Avg.Obj 2.6840E+06 1.0761E+04 6.3547E+04 2.3987E+03 2.5788E+04 1.6249E+04 1.7309E+05 3.4584E+03 2.4095E+04 2.3780E+03 2.0685E+04 3.0813E+03

Std. 

dev.
1.9727E+06 3.3144E+03 4.4469E+04

1.1336E+02
1.5127E+04 7.8963E+03 9.0965E+04 1.0807E+03 1.0348E+04 1.1426E+02 1.2932E+04 4.3954E+02

p-Value 3.6484E-06 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5160E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A 7.5569E-10 7.2220E-08

Rank 12.0 5.0 10.0 2.0 9.0 6.0 11.0 4.0 8.0 1.0 7.0 3.0

f
21

Avg.Obj 8.8824E+07 9.2658E+04 5.4296E+06 7.6027E+04 1.1376E+06 5.4364E+05 1.1684E+07 8.9538E+04 4.8133E+05 7.3129E+04 9.5673E+05 7.2886E+04

Std. 

dev.
5.0304E+07 8.1384E+04 4.4055E+06 3.3994E+04 9.5708E+05 2.6735E+05 4.7384E+06 5.1668E+04 4.0490E+05 3.4622E+04 6.7945E+05 4.5934E+04

p-Value 5.7773E-11 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5024E-10 7.5569E-10 7.5245E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 5.0 10.0 3.0 9.0 7.0 11.0 4.0 6.0 2.0 8.0 1.0

f
22

Avg.Obj 1.4461E+04 2.4501E+03 3.1466E+03 2.5714E+03 3.0278E+03 3.4264E+03 3.9432E+03 2.4466E+03 2.8155E+03 2.5355E+03 3.0025E+03 2.4858E+03

Std. 

dev.
1.7645E+04 6.7729E+01 2.3560E+02 1.5870E+02 2.0829E+02 2.0830E+02 2.1747E+02 7.7481E+01 2.0854E+02 1.5982E+02 2.1972E+02 1.9248E+01

p-Value 3.2813E-11 7.5569E-10 7.5569E-10 7.5484E-10 7.5569E-10 7.3811E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10 7.5569E-10 2.1636E-10

Rank 12.0 2.0 9.0 5.0 8.0 10.0 11.0 1.0 6.0 4.0 7.0 3.0

f
17

Avg.Obj 9.7588E+08 8.6491E+05 4.9362E+07 6.7084E+05 1.8098E+07 1.2048E+06 2.3809E+08 8.4569E+05 2.3871E+06 5.8095E+05 1.4128E+07 1.3032E+05

Std. 

dev.
3.0751E+08 4.3737E+05 3.5157E+07 2.4522E+05 1.0542E+07 3.3170E+05 6.1997E+07 5.0180E+05 1.2062E+06 2.3867E+05 8.5281E+06 4.7015E+04

p-Value 7.5569E-10 7.5569E-10 7.5569E-10 7.5228E-10 7.5569E-10 7.5399E-10 7.5569E-10 7.5569E-10 7.5569E-10 2.3585E-06 7.5569E-10 N/A

Rank 12.0 5.0 10.0 3.0 9.0 6.0 11.0 4.0 7.0 2.0 8.0 1.0

f
18

Avg.Obj 2.6544E+10 8.4821E+04 1.3580E+09 5.9004E+03 1.0708E+04 5.7690E+03 1.0299E+10 7.4520E+04 3.5677E+03 5.2529E+03 5.3358E+03 3.2621E+03

Std. 

dev.
4.1259E+09 1.3916E+04 1.4553E+09 2.1625E+03 8.0898E+03 1.2376E+03 1.6891E+09 1.0210E+04 1.2783E+03 2.1504E+03 2.0796E+03 1.4043E+03

p-Value 7.5569E-10 7.5569E-10 7.5569E-10 7.5228E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 4.8591E-06 2.5693E-08 7.5569E-10 N/A

Rank 12.0 9.0 10.0 6.0 7.0 5.0 11.0 8.0 2.0 3.0 4.0 1.0

f
19

Avg.Obj 6.7867E+03 1.9555E+03 1.9828E+03 1.9242E+03 1.9863E+03 1.9681E+03 3.2330E+03 1.9528E+03 1.9479E+03 1.9239E+03 1.9822E+03 1.9232E+03

Std. 

dev.
1.3737E+03 2.7468E+01 1.2040E+02 2.7284E+00 3.0161E+01 3.1111E+01 2.0942E+02 2.6465E+01 2.9197E+01 9.7989E+00 3.0167E+01 8.5602E+00

p-Value 7.5569E-10 7.5569E-10 7.5569E-10 7.4382E-10 7.5569E-10 7.5416E-10 7.5569E-10 7.5211E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 6.0 9.0 3.0 10.0 7.0 11.0 5.0 4.0 2.0 8.0 1.0

f
20

Avg.Obj 1.4865E+06 1.1760E+04 1.1124E+05 2.7026E+03 9.5643E+04 9.8378E+03 3.9347E+05 4.1285E+03 2.8924E+04 2.6891E+03 8.2767E+04 2.6531E+03

Std. 

dev.
7.1230E+02 2.8654E+03 6.5140E+04 1.1786E+02 9.0336E+04 4.7445E+03 1.5942E+05 8.8219E+02 9.5299E+03 1.3966E+02 6.1238E+04 5.0937E+02

p-Value 7.5569E-10 7.5569E-10 7.5569E-10 7.5552E-10 7.5569E-10 7.5228E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 6.0 10.0 3.0 9.0 5.0 11.0 4.0 7.0 2.0 8.0 1.0

f
21

Avg.Obj 3.5227E+08 4.9253E+05 1.1504E+07 4.4711E+05 5.1710E+06 8.3068E+05 5.5107E+07 4.2194E+05 2.6425E+06 4.0437E+05 4.5187E+06 9.5857E+04

Std. 

dev.
1.4564E+08 3.1941E+05 5.9151E+06 1.5025E+05 3.1599E+06 3.2473E+05 1.3778E+07 2.0779E+05 1.1071E+06 1.6968E+05 3.3718E+06 4.1897E+04

p-Value 7.5569E-10 7.5569E-10 7.5569E-10 7.5279E-10 7.5569E-10 7.5484E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 5.0 10.0 4.0 9.0 6.0 11.0 3.0 7.0 2.0 8.0 1.0

Table 5	 Hybrid functions: comparison of the CSBO with other optimization algorithms for 30-D and 50-D problems. 
The best Avg.Obj results among the 12 algorithms are shown in bold. (cont.)
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Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

30-D

f
22

Avg.Obj 4.9372E+05 2.8717E+03 4.2585E+03 3.1872E+03 4.2343E+03 4.2081E+03 8.2666E+03 2.8188E+03 3.6787E+03 3.1199E+03 4.0302E+03 3.0674E+03

Std. 

dev.
4.8462E+05 3.1929E+02 5.3113E+02 2.5854E+02 4.9537E+02 3.2813E+02 1.6985E+03 1.8963E+02 3.9958E+02 3.1231E+02 4.1731E+02 2.5273E+02

p-Value 7.5569E-10 4.2946E-03 7.5569E-10 7.3878E-10 7.5569E-10 7.5399E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10 7.5569E-10 1.5375E-03

Rank 12.0 2.0 10.0 5.0 9.0 8.0 11.0 1.0 6.0 4.0 7.0 3.0

Overall rank 72.0 33.0 59.0 24.0 53.0 37.0 66.0 25.0 33.0 15.0 43.0 8.0

Table 6	 Composition functions: comparison of the CSBO with other optimization algorithms for 30-D problems. The 
best Avg.Obj results among the 12 algorithms are shown in bold.

Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

30-D

f
23

Avg.Obj 3.1380E+03 2.6222E+03 2.6151E+03 2.6158E+03 2.6354E+03 2.6153E+03 3.1264E+03 2.6153E+03 2.6114E+03 2.6157E+03 2.6337E+03 2.6152E+03

Std. 

dev.
1.1085E+02 2.1393E+00 8.2920E+01 4.6064E-01 1.1729E+01 1.7565E-03 1.1083E+02 1.2428E-02 2.2992E+01 4.7429E-01 9.9095E+00 4.4453E-04

p-Value 2.1108E-11 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 1.6227E-03 7.5569E-10 N/A 7.5569E-10 7.5569E-10 7.5569E-10

Rank 12.0 8.0 2.0 7.0 10.0 4.5 11.0 4.5 1.0 6.0 9.0 3.0

f
24

Avg.Obj 2.7877E+03 2.6256E+03 2.6105E+03 2.6315E+03 2.6073E+03 2.6509E+03 2.7872E+03 2.6248E+03 2.6018E+03 2.6310E+03 2.6067E+03 2.6051E+03

Std. 

dev.
1.6495E+01 1.2132E+00 1.0718E+01 7.8199E+00 4.5192E+00 1.7631E+01 1.9351E+01 1.1295E+00 3.2940E+00 6.5551E+00 5.1267E+00 2.9285E+00

p-Value 8.0265E-11 7.5569E-10 7.5569E-10 7.5484E-10 7.5569E-10 7.4113E-10 9.5875E-02 7.5569E-10 N/A 7.5569E-10 7.5569E-10 3.7099E-02

Rank 12.0 7.0 5.0 9.0 4.0 10.0 11.0 6.0 1.0 8.0 3.0 2.0

f
25

Avg.Obj 2.7698E+03 2.7049E+03 2.7058E+03 2.7054E+03 2.7242E+03 2.7361E+03 2.7666E+03 2.7048E+03 2.7027E+03 2.7062E+03 2.7216E+03 2.7161E+03

Std. 

dev.
1.1994E+01 2.4505E+00 2.5171E+00 1.4246E+00 1.4781E+01 4.8677E+00 1.1983E+01 1.0253E+00 3.7170E+00 1.9780E+00 1.5410E+01 2.3908E+00

p-Value 5.0194E-11 7.5569E-10 7.5569E-10 7.5569E-10 7.3544E-10 7.2929E-10 2.8083E-11 7.2345E-08 N/A 7.5569E-10 6.8144E-10 7.3377E-10

Rank 12.0 3.0 5.0 4.0 9.0 10.0 11.0 2.0 1.0 6.0 8.0 7.0

f
26

Avg.Obj 2.7181E+03 2.7084E+03 2.7185E+03 2.7224E+03 2.7005E+03 2.7801E+03 2.7171E+03 2.7084E+03 2.7067E+03 2.7104E+03 2.7004E+03 2.7003E+03

Std. 

dev.
5.9360E+00 2.7304E+01 3.3277E+01 4.1849E+01 1.2530E-01 4.0301E+01 4.9389E+00 2.7310E+01 1.3534E+01 3.0311E+01 1.2952E-01 3.0943E-02

p-Value 2.4540E-10 1.8586E-05 2.9010E-07 1.6881E-09 7.5569E-10 1.8607E-08 4.5325E-05 1.8586E-05 1.4172E-08 2.1913E-06 7.5569E-10 N/A

Rank 9.0 6.0 10.0 11.0 3.0 12.0 8.0 5.0 4.0 7.0 2.0 1.0

f
27

Avg.Obj 3.7302E+03 3.1164E+03 3.2908E+03 3.2601E+03 3.6694E+03 3.8203E+03 3.7152E+03 3.1039E+03 3.1997E+03 3.2406E+03 3.6455E+03 3.1015E+03

Std. 

dev.
9.3888E+01 1.0523E+01 2.9260E+02 1.0986E+02 3.8912E+02 2.2162E+02 1.0250E+02 1.2863E+00 2.0826E+02 1.2823E+02 4.2561E+02 5.2268E-01

p-Value 2.9643E-09 7.5569E-10 1.8648E-09 7.4719E-10 1.5171E-09 9.8073E-09 1.2659E-08 9.2946E-05 7.5569E-10 7.5569E-10 9.5875E-08 N/A

Rank 11.0 3.0 7.0 6.0 9.0 12.0 10.0 2.0 4.0 5.0 8.0 1.0

f
28

Avg.Obj 7.6623E+03 4.2411E+03 7.0162E+03 3.7952E+03 4.9296E+03 7.5656E+03 7.4073E+03 3.6514E+03 5.9942E+03 3.7309E+03 4.9060E+03 5.7270E+03

Std. 

dev.
8.2683E+02 3.5222E+02 5.4659E+02 2.0932E+02 6.0352E+02 6.8329E+02 9.2015E+02 4.2063E+01 8.1094E+02 1.7864E+02 4.9021E+02 1.9547E+02

p-Value 1.9425E-09 7.5569E-10 9.1375E-08 7.5569E-10 7.5569E-10 4.5438E-11 3.7190E-11 N/A 1.0872E-09 7.5569E-10 7.5569E-10 6.2597E-10

Rank 12.0 4.0 9.0 3.0 6.0 11.0 10.0 1.0 8.0 2.0 5.0 7.0

Table 5	 Hybrid functions: comparison of the CSBO with other optimization algorithms for 30-D and 50-D problems. 
The best Avg.Obj results among the 12 algorithms are shown in bold. (cont.)
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Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

30-D

f
29

Avg.Obj 1.8760E+07 1.6077E+04 7.5539E+06 7.4381E+05 4.4412E+06 2.6289E+06 1.8620E+07 6.2988E+03 1.5826E+06 2.0352E+05 4.2436E+06 4.2314E+03

Std. 

dev.
1.3167E+07 3.4732E+03 1.2094E+07 2.4760E+06 4.9197E+06 4.5078E+06 1.6577E+07 7.1446E+02 5.4582E+06 1.3232E+06 4.8302E+06 2.3206E+02

p-Value 7.2792E-09 7.5569E-10 1.3831E-09 7.5399E-10 7.4990E-10 7.4029E-10 6.9928E-08 7.5569E-10 7.5569E-10 7.5569E-10 7.5279E-10 N/A

Rank 12.0 3.0 10.0 5.0 9.0 7.0 11.0 2.0 6.0 4.0 8.0 1.0

f
30

Avg.Obj 1.5790E+06 2.0114E+04 4.5515E+05 9.8550E+03 9.1064E+04 6.2358E+03 1.4505E+06 5.6485E+03 6.0181E+04 9.6229E+03 9.0257E+04 5.3403E+03

Std. 

dev.
3.8527E+05 6.6873E+03 2.6586E+05 3.7609E+03 7.3361E+04 6.1930E+02 4.5848E+05 8.7147E+02 2.9296E+04 2.3675E+03 6.1458E+04 5.4975E+02

p-Value 1.1101E-09 7.5569E-10 1.2659E-08 7.5569E-10 7.5569E-10 7.0806E-10 3.3668E-09 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 6.0 10.0 5.0 9.0 3.0 11.0 2.0 7.0 4.0 8.0 1.0

Overall rank 92.0 40.0 58.0 50.0 59.0 69.5 83.0 24.5 32.0 42.0 51.0 23.0

Table 7	 Composition functions: comparison of the CSBO with other optimization algorithms for 50-D problems. The 
best Avg.Obj results among the 12 algorithms are shown in bold.

Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

50-D

f
23

Avg.Obj 4.1389E+03 2.7075E+03 2.7520E+03 2.6504E+03 2.6854E+03 2.6441E+03 4.0451E+03 2.6441E+03 2.5827E+03 2.6485E+03 2.6839E+03 2.6440E+03

Std. 

dev.
1.7899E+02 1.5485E+01 9.8725E+01 3.0814E+00 2.9707E+01 7.3895E-03 2.4907E+02 1.0667E-02 7.4011E+01 1.8486E+00 1.0428E+01 5.8747E-04

p-Value 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A 7.5569E-10 7.5569E-10 7.5569E-01

Rank 12.0 9.0 10.0 6.0 8.0 3.5 11.0 3.5 1.0 5.0 7.0 2.0

f
24

Avg.Obj 3.0495E+03 2.6725E+03 2.6421E+03 2.6799E+03 2.6003E+03 2.7028E+03 3.0440E+03 2.6721E+03 2.6070E+03 2.6791E+03 2.6003E+03 2.6367E+03

Std. 

dev.
4.0193E+01 2.6671E+00 2.4170E+01 3.3146E+00 5.4160E-01 2.6180E+01 3.4171E+01 5.1024E+00 1.4281E+01 3.6231E+00 5.5893E-01 2.1385E+01

p-Value 7.5569E-10 7.5569E-10 7.5569E-10 7.5228E-10 N/A 7.5484E-10 7.5569E-10 7.5569E-10 1.8153E-03 7.5569E-10 N/A 2.1636E-03

Rank 12.0 7.0 5.0 9.0 1.5 10.0 11.0 6.0 3.0 8.0 1.5 4.0

f
25

Avg.Obj 2.8819E+03 2.7119E+03 2.7104E+03 2.7314E+03 2.7168E+03 2.7634E+03 2.8797E+03 2.7065E+03 2.7003E+03 2.7149E+03 2.7159E+03 2.7314E+03

Std. 

dev.
2.3802E+01 2.3259E+00 4.0475E+00 3.1715E+00 3.2142E+01 8.7552E+00 2.9474E+01 6.5297E+00 2.2481E+00 3.7768E+00 2.8957E+01 1.5111E-01

p-Value 6.0844E-11 7.5569E-10 7.5569E-10 3.8094E-12 7.5036E-11 7.5313E-10 4.7989E-07 7.5569E-10 N/A 7.5569E-10 9.1357E-11 2.1636E-10

Rank 12.0 4.0 3.0 8.5 7.0 10.0 11.0 2.0 1.0 5.0 6.0 8.5

f
26

Avg.Obj 2.7311E+03 2.7943E+03 2.7975E+03 2.7887E+03 2.7005E+03 2.7982E+03 2.7270E+03 2.7846E+03 2.7967E+03 2.7711E+03 2.7005E+03 2.7078E+03

Std. 

dev.
1.4777E+01 2.3406E+01 1.8168E+01 8.4199E+01 1.0711E-01 1.4108E+01 1.0922E+01 3.6026E+01 1.7814E+01 9.1783E+01 9.1350E-02 2.1179E+01

p-Value 7.5569E-10 1.0872E-09 9.0681E-10 7.5569E-10 N/A 7.9968E-10 1.6772E-03 6.3812E-09 9.0681E-10 5.0608E-04 N/A 1.0177E-01

Rank 5.0 9.0 11.0 8.0 1.5 12.0 4.0 7.0 10.0 6.0 1.5 3.0

f
27

Avg.Obj 5.2136E+03 3.7932E+03 5.1924E+03 3.6682E+03 4.8355E+03 4.7212E+03 5.1939E+03 3.6832E+03 4.3665E+03 3.6561E+03 4.8055E+03 3.4928E+03

Std. 

dev.
5.7171E+01 1.2750E+02 3.1406E+02 1.0880E+02 1.0442E+02 2.1927E+02 8.6634E+01 1.9267E+02 1.5245E+02 1.1728E+02 1.3498E+02 4.8228E+02

p-Value 4.0620E-11 7.5569E-10 9.9615E-11 7.5228E-10 7.5569E-10 7.5399E-10 2.5435E-11 7.4382E-10 7.5569E-10 6.5295E-05 7.5569E-10 N/A

Rank 12.0 5.0 10.0 3.0 9.0 7.0 11.0 4.0 6.0 2.0 8.0 1.0

Table 6	 Composition functions: comparison of the CSBO with other optimization algorithms for 30-D problems. The 
best Avg.Obj results among the 12 algorithms are shown in bold. (cont.)
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Method CSA FA KH MVO WOA SBO CCSA CFA CKH CMVO CWOA CSBO

50-D

f
28

Avg.Obj 1.4253E+04 7.1208E+03 1.1834E+04 4.5947E+03 7.8565E+03 1.2274E+04 1.4175E+04 4.0265E+03 9.3555E+03 4.5181E+03 7.6341E+03 8.6528E+03

Std. 

dev.
8.3188E+02 6.6624E+02 1.4449E+03 4.1304E+02 1.5909E+03 1.2712E+03 9.6319E+02 8.0207E+01 1.0213E+03 4.9555E+02 1.6450E+03 7.7053E+02

p-Value 7.5569E-10 7.5569E-10 8.5342E-10 7.3878E-10 7.5569E-10 1.8648E-09 2.6731E-11 N/A 7.5569E-10 7.5569E-10 7.5569E-10 1.5375E-09

Rank 12.0 4.0 9.0 3.0 6.0 10.0 11.0 1.0 8.0 2.0 5.0 7.0

f
29

Avg.Obj 7.9630E+07 2.8216E+04 3.4356E+08 2.7550E+06 2.9042E+07 3.7709E+06 6.0688E+07 1.0337E+04 3.1187E+07 9.3730E+05 2.4111E+07 8.7044E+03

Std. 

dev.
5.1018E+07 4.4022E+03 2.8723E+08 1.0794E+07 2.3261E+07 1.2994E+07 3.8746E+07 1.1031E+03 1.4731E+08 6.1786E+06 2.0896E+07 1.0284E+03

p-Value 4.9524E-11 7.5569E-10 2.7420E-11 7.5569E-10 5.6855E-09 7.5535E-10 6.2591E-09 7.5569E-10 3.7260E-07 7.5569E-10 7.5552E-10 N/A

Rank 11.0 3.0 12.0 5.0 8.0 6.0 10.0 2.0 9.0 4.0 7.0 1.0

f
30

Avg.Obj 1.3594E+07 1.5207E+05 2.4083E+06 3.5503E+04 1.0525E+05 1.7875E+04 1.2856E+07 1.4289E+05 1.0046E+05 3.2395E+04 9.0749E+04 1.3086E+04

Std. 

dev.
3.0940E+06 5.8782E+04 1.5522E+06 1.1145E+04 6.1549E+04 2.4934E+03 3.5440E+06 5.0709E+04 4.7341E+04 8.5506E+03 4.9049E+04 2.5788E+02

p-Value 6.1064E-09 7.5569E-10 7.5569E-10 7.5569E-10 7.5569E-10 7.5399E-10 1.1471E-10 7.5535E-10 7.5569E-10 7.5569E-10 7.5569E-10 N/A

Rank 12.0 9.0 10.0 4.0 7.0 2.0 11.0 8.0 6.0 3.0 5.0 1.0

Overall rank 88.0 50.0 70.0 46.5 48.0 60.5 80.0 33.5 44.0 35.0 41.0 27.5

Table 7	 Composition functions: comparison of the CSBO with other optimization algorithms for 50-D problems. The 
best Avg.Obj results among the 12 algorithms are shown in bold. (cont.)
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Figure 1 Convergence performance of all 12 optimization algorithms in  
 eight benchmark functions (f1, f4, f10, f11, f17, f21, f29, f30) at 30-D. 

 

Figure 1 Convergence performance of all 12 optimization algorithms in eight benchmark functions  
(f1, f4, f10, f11, f17, f21, f29, f30) at 30-D.
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Figure 2 Convergence performance of all 12 optimization algorithms in  
 eight benchmark functions (f1, f4, f10, f11, f17, f21, f29, f30) at 50-D. 

 

Figure 2 Convergence performance of all 12 optimization algorithms in eight benchmark functions  
(f1, f4, f10, f11, f17, f21, f29, f30) at 50-D.
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Figure 3 Rank for the mean values of 30-D and 50-D cases (Friedman rank).
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                (b) 

 
Figure 3 Rank for the mean values of 30-D and 50-D cases (Friedman rank). 
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Conclusions and future scope
	 We present a novel, improved meta-heuristic 
SBO using a wide variety of chaotic maps (CSBO), in 
which to tune the main parameter, the greatest step size 
(α) of the standard SBO ; in order to solve complex 
optimization problems. The numerical results of the  
experiment show that this novel Tent map chaotic  
algorithm can greatly enhance the performance of the  
basic SBO. Moreover, the tuned SBO significantly  
enhanced the reliability of the global optimality and the 
quality of the solutions (at CEC2014) of the newly formed 
algorithm, due to the application of deterministic chaotic 
signals in place of constant values. In order to evaluate 
the algorithm with its original (SBO) and improved (CSBO) 
variants, other mathematical benchmark examples were 
employed. The statistical results and success rates of the 
CSBO suggest that the tuned algorithms clearly improve 
the reliability of the global optimality, and further enhance 
the quality of the results. 

	 The CSBO proved to be simple and easy to 
implement within all of our applied (and similar type) 
applications. In future works, we intend to investigate  
the further capabilities of the CSBO algorithm in  
solving real-world engineering problems, as well as  
discrete optimization problems.
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