การเพิ่มประสิทธิภาพการทำความร้อนของตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศ ชนิดท่อความร้อนด้วยการติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา Thermal efficiency enhancement of a heat pipe evacuated-tube solar collector by installing a compound parabolic concentrating reflector

สรวิศ สอนสารี^{1*}, กฤษฎา อันอ้าย¹ Sorawit Sonsaree^{1*}, Kritsada On-ai¹

Received: 21 October 2021 ; Revised: 20 December 2021 ; Accepted: 17 January 2022

บทคัดย่อ

งานวิจัยนี้เป็นการศึกษาการเพิ่มประสิทธิภาพเชิงความร้อนของตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศชนิดท่อความร้อน ด้วยการติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา ในการศึกษาแผ่นสะท้อนรังสีอาทิตย์ที่ทำจากวัสดุแตกต่าง กัน 2 ชนิด คือ แผ่นสังกะสี และแผ่นสแตนเลส ที่มีความสูงของรางสะท้อนเท่ากับ 86.80 mm ได้ถูกนำมาใช้ร่วมกับหลอดแก้ว สุญญากาศที่มีขนาดเส้นผ่านศูนย์กลางภายในและเส้นผ่านศูนย์กลางภายนอกเท่ากับ 33.80 mm และ 47.20 mm ที่มีความยาว 1,836 mm จำนวน 8 ท่อ ผลการศึกษาเปรียบเทียบในกรณีที่มีการติดตั้งและไม่มีการติดตั้งแผ่นสะท้อนรังสีอาทิตย์ พบว่า เมื่อติด ตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลาจะสามารถช่วยเพิ่มประสิทธิภาพเชิงความร้อนที่เครื่องทำน้ำร้อนพลังงาน แสงอาทิตย์ผลิตได้ โดยประสิทธิภาพเชิงความร้อนของระบบจะมีค่าสูงสุดเมื่อระบบใช้แผ่นสะท้อนรังสีอาทิตย์ที่ทำจากแผ่นสังกะสี แต่หากพิจารณาถึงอุณหภูมิน้ำร้อนสูงสุดที่ระบบผลิตได้ พบว่า ระบบที่มีการใช้แผ่นสะท้อนรังสีอาทิตย์ที่ทำจากแผ่นสแตนเลส จะมีความเหมาะสมที่สุด

คำสำคัญ: เครื่องทำน้ำร้อนพลังงานแสงอาทิตย์ ตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศชนิดท่อความร้อน แผ่นสะท้อน รังสีอาทิตย์แบบรูปประกอบพาราโบลา

Abstract

The goal of this study was to study the thermal efficiency enhancement of a heat pipe evacuated-tube solar collector by installing a compound parabolic concentrating (CPC) reflector. The reflector was composed of two distinct materials: galvanized sheet and stainless steel sheet. Eight vacuum glass tubes with inner and outer diameters of 33.80 mm and 47.20 mm, and a length of 1,836 mm were utilized with a CPC reflector height of 86.20 mm. The results of studies comparing the thermal efficiency provided by solar water heating system (SWHS) with and without CPC reflectors revealed that installing CPC reflectors could increase the heat quality produced by the SWHS. When CPC reflectors made of galvanized sheet were used, the system's thermal efficiency reached its highest. In addition, when it achieved the highest hot water temperature that the system could provide. The method utilizing CPC reflectors constructed of stainless steel sheets was discovered to be the most appropriate.

Keywords: Solar Water Heating System (SWHS), heat pipe evacuated-tube collector, Compound Parabolic Concentrating (CPC) reflector.

¹ อาจารย์, คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏพิบูลสงคราม จังหวัดพิษณุโลก 65000

¹¹ Lecturers, Faculty of Industrial Technology, Pibulsongkram Rajabhat University, Phitsanulok Province, 65000 Corresponding author Tel.: 063-3344448, E-mail address: sorawitsonsaree@psru.ac.th

บทนำ

การนำเอาพลังงานทดแทนมาประยุกต์ใช้ในรูปแบบต่าง ๆ เพื่อ ลดการใช้พลังงานฟอสซิลนั้นถือว่ามีความสำคัญและมีความ ท้าทายเป็นอย่างมาก โดยเฉพาะอย่างยิ่งในช่วงที่ประเทศ กำลังประสบกับวิกฤตการณ์ด้านพลังงาน โดยหนึ่งในวิธีการ สำคัญในการลดการใช้พลังงานฟอสซิลในรูปแบบต่างๆ ได้แก่ การนำเอาพลังงานทดแทนมาใช้งาน และเมื่อให้ความสำคัญ ไปที่พลังงานความร้อนจากพลังงานแสงอาทิตย์ พบว่า จาก แผนพัฒนาพลังงานทดแทนและอนุรักษ์พลังงานทางเลือก พ.ศ. 2561-2580 (AEDP2018) (กรมพัฒนาพลังงานทดแทน และอนุรักษ์พลังงาน, 2563) ประเทศไทยมีเป้าหมายในการใช้ พลังงานความร้อนจากพลังงานแสงอาทิตย์เพื่อลดสัดส่วนการ ใช้พลังงานฟอสซิลในปี พ.ศ. 2580 อยู่ที่ 100 kTOE (พันตัน เทียบเท่าน้ำมันดิบ) และเมื่อพิจารณาศักยภาพพลังงานแสง อาทิตย์ พบว่า ประเทศไทยนั้นถือได้ว่าเป็นประเทศที่มีการ ใช้ประโยชน์จากรังสีดวงอาทิตย์ค่อนข้างสูง โดยมีค่าปริมาณ รังสีอาทิตย์รวม (Total solar radiation) รายวันเฉลี่ยอยู่ที่ ประมาณ 17.60 MJ/m²-day (กรมพัฒนาพลังงานทดแทนและ อนุรักษ์พลังงาน, 2560) แต่เมื่อพิจารณาปริมาณรังสีอาทิตย์ใน รูปแบบอื่น โดยเฉพาะปริมาณรังสีอาทิตย์ชนิดรังสีตรง (Beam or direct solar radiation) พบว่า ประเทศไทยมีศักยภาพ ปริมาณรังสีอาทิตย์ชนิดรังสีตรงค่อนข้างต่ำ จึงไม่เหมาะกับ การนำเอาเทคโนโลยีการผลิตพลังงานไฟฟ้าจากพลังงาน ความร้อน (Solar thermal power plant) ในรูปแบบอุณหภูมิ สูงมาใช้งาน (Thawonngamyingsakul & Kiatsiriroat, 2012) อย่างไรก็ตามยังคงสามารถประยุกต์พลังงานแสงอาทิตย์ใน รูปแบบความร้อนอื่นๆ เช่น การอบแห้งพลังงานแสงอาทิตย์ การผลิตน้ำร้อนจากพลังงานแสงอาทิตย์ การทำความเย็นด้วย พลังงานแสงอาทิตย์ และการผลิตพลังงานไฟฟ้าจากพลังงาน ความร้อนจากแสงอาทิตย์ในรูปแบบอุณหภูมิต่ำ (Sonsaree et al., 2018) เป็นต้น นอกจากเทคโนโลยีข้างต้นแล้วจะเห็น ได้ว่ามีความจำเป็นอย่างยิ่งที่จะต้องพัฒนาขีดความสามารถ ทางด้านเทคโนโลยี ที่จะสามารถนำมาประยุกต์ใช้หรือเพื่อ เพิ่มประสิทธิภาพการทำงานของเทคโนโลยีที่มีอยู่แล้วให้ ้สามารถทำงานได้ดีมากยิ่งขึ้น หรืออาจกล่าวได้อีกนัยหนึ่งว่า เพื่อก่อให้เกิดการเปลี่ยนรูปพลังงานอย่างคุ้มค่าหรือดีที่สุด สำหรับงานวิจัยนี้จึงได้ให้ความสนใจไปที่การศึกษาการเพิ่ม ประสิทธิภาพเชิงความร้อนของตัวเก็บรังสีอาทิตย์แบบหลอด แก้วสุญญากาศชนิดท่อความร้อน (Heat pipe evacuated-tube solar collectors) โดยการติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบ รูปประกอบพาราโบลา (Compound Parabolic Concentrating (CPC) reflector) ผลการศึกษางานวิจัยต่าง ๆ ที่ผ่านมา พบว่า สรวิศ สอนสารี (2562) ได้ดำเนินการศึกษาผลของความสูงและ วัสดุของแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา

ที่มีผลต่อการผลิตน้ำร้อนของตัวเก็บรังสีอาทิตย์แบบหลอด สุญญากาศ โดยในการศึกษาวัสดุที่นำมาใช้สร้างแผ่นสะท้อน รังสีอาทิตย์ 3 ชนิด คือ แผ่นอลูมิเนียม แผ่นสังกะสี และแผ่น สแตนเลส ที่มีความสูงของแผ่นสะท้อน 3 ความสูง คือ ความ สูงสูงสุด 86.80 mm ความสูงปานกลาง 56.80 mm และความ สูงต่ำสุด 28.40 mm ผลการศึกษาเมื่อพิจารณาถึงค่าใช้จ่าย ต่อพลังงานความร้อนที่ผลิตได้ แผ่นสังกะสีที่มีความสูงต่ำสุด จะเหมาะสมที่สุด เนื่องจากระบบจะสามารถผลิตอุณหภูมิน้ำ ร้อนได้สูงที่สุด และมีค่าใช้จ่ายต่อพลังงานความร้อนที่ผลิตได้ ์ ต่ำที่สุด Wu *et al.* (2021) ได้ดำเนินการทดสอบตัวเก็บรังสี อาทิตย์ที่มีการติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบ พาราโบลา ผลการศึกษาพบว่า ความสูงของแผ่นสะท้อน รังสีอาทิตย์ที่มีความเหมาะสมถือว่าป็นปัจจัยสำคัญที่จะช่วย ให้การทำงานของตัวเก็บรังสีอาทิตย์มีประสิทธิภาพเฉลี่ยสูงสุด ตลอดช่วงระยะเวลาทำงานตลอดปี Vijayakumar et al. (2019) พบว่าแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา เมือถูกนำมาประยุกต์ใช้ร่วมกับตัวเก็บรังสีอาทิตย์แบบท่อ สุญญากาศ และตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศ ชนิดท่อความร้อน จะสามารถช่วยเพิ่มประสิทธิภาพและ คุณภาพความร้อน (อุณหภูมิน้ำร้อน) ในการผลิตน้ำร้อนจาก พลังงานแสงอาทิตย์ได้เช่นเดียวกับ Jiang et al. (2020), Pranesh et al. (2019) และ Tian et al. (2018) แผ่นสะท้อนรังสี อาทิตย์จะช่วยให้ความสามารถในการผลิตน้ำร้อนของตัวเก็บ รังสีอาทิตย์เพิ่มขึ้น ประกอบกับจะทำให้อุณหภูมิน้ำร้อนที่ผลิต ได้มีอุณหภูมิที่เหมาะสมที่สามารถทำงานร่วมกับเทคโนโลยี ต่าง ๆ ที่จะเกิดขึ้นในอนาคต นอกจากนี้ยังพบอีกว่าเมื่อนำเอา แผ่นสะท้อนรังสีอาทิตย์มาประยุกต์ใช้งานร่วมกับตัวเก็บรังสี อาทิตย์จะช่วยให้ตัวเก็บรังสีอาทิตย์ดังกล่าวสามารถผลิตน้ำ ร้อนได้ตลอดช่วงระยะเวลาระหว่างวันโดยที่ไม่ต้องหมุนตาม ดวงอาทิตย์ ซึ่งสอดคล้องกับผลการศึกษาของ Gao and Chen (2020) ที่ได้กล่าวว่า การออกแบบรูปลักษ์ของแผ่นสะท้อน ้รังสีอาทิตย์ที่ดีนั้นจะช่วยเพิ่มประสิทธิภาพเชิงแสง (Optical efficiency) ของตัวเก็บรังสีอาทิตย์ได้ Li *et al.* (2020) ได้ศึกษา เปรียบเทียบค่าใช้จ่ายที่เกิดขึ้นต่อปริมาณพลังงานที่ผลิตได้ ของตัวเก็บรังสีอาทิตย์ที่ไม่มีการติดตั้งและมีการติดตั้งแผ่น สะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา ผลการศึกษา พบว่า เมื่อต้องการผลิตพลังงานความร้อนที่มีอุณหภูมิสูง ตัวเก็บรังสีอาทิตย์ที่มีการติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบ รูปประกอบพาราโบลาจะมีความเหมาะสมที่สุด เนื่องจาก จะช่วยให้ค่าใช้จ่ายต่อพลังงานที่ผลิตได้ลดลง เมื่อ เปรียบเทียบกับตัวเก็บรังสีอาทิตย์ที่ไม่มีการติดตั้งแผ่นสะท้อน รังสีอาทิตย์แบบรูปประกอบพาราโบลา Xia and Chen (2020) ได้ทำการออกแบบแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบ พาราโบลาขนาดเล็กเพื่อนำมาติดตั้งใช้งานร่วมกับตัวเก็บ

รังสีอาทิตย์แบบหลอดแก้วสุญญากาศ โดยในการติดตั้งแผ่น สะท้อนนั้นจะทำการย้ายจุดตัดของรูปประกอบพาราโบลาซึ่ง โดยปกติจะอยู่ด้านหลังของหลอดแก้วใดหลอดแก้วหนึ่ง ย้าย มาอยู่กึ่งกลางระหว่างหลอดแก้ว (หลอดแก้วที่วางติดกัน) ผลการศึกษาพบว่า ตัวเก็บรังสีอาทิตย์ที่มีการติดตั้งแผ่น สะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลาขนาดเล็กด้วย ้วิธีการดังกล่าว จะสามารถเพิ่มประสิทธิภาพเชิงความร้อนโดย เฉลี่ยอยู่ที่ร้อยละ 27.3 เมื่อเปรียบเทียบกับตัวเก็บรังสีอาทิตย์ ที่ไม่มีการติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบ พาราโบลา Chamsa-ard *et al.* (2014) พัฒนา ออกแบบ สร้าง และทดสอบประสิทธิภาพเชิงความร้อนของตัวเก็บรังสีอาทิตย์ แบบหลอดแก้วสุญญากาศชนิดท่อความร้อนที่มีขนาดเส้น ้ผ่านศูนย์กลางภายในและภายนอกเท่ากับ 37 และ 47 mm ตามลำดับ ที่ทำงานร่วมกับแผ่นสะท้อนรังสีอาทิตย์แบบ รูปประกอบพาราโบลาภายใต้มาตรฐานการทดสอบ ISO 9806-1 พบว่า ตัวเก็บรังสีอาทิตย์จะมีประสิทธิภาพความ ร้อนอยู่ที่ร้อยละ 78 และสัมประสิทธิ์การสูญเสียความร้อน (Heat loss coefficient) a, และ a, คือ 3.55 และ 0.06 W/m²-K ตามลำดับ

จากที่ได้กล่าวไปแล้วข้างต้นจะเห็นได้ว่าหากมีการ ประยุกต์ใช้แผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา ร่วมกับตัวเก็บรังสีอาทิตย์แบบท่อสุญญากาศชนิดท่อความ ร้อน จะช่วยให้เครื่องทำน้ำร้อนพลังงานแสงอาทิตย์มีความ สามารถในการผลิตพลังงานความร้อนได้สูงขึ้น หรือสามารถ เพิ่มคุณภาพความร้อน (อุณหภูมิน้ำร้อน) ได้สูงขึ้น แต่ อย่างไรก็ตามมีความจำเป็นที่จะต้องศึกษาถึงความเหมาะสม ในการเลือกใช้วัสดุที่จะนำมาทำแผ่นสะท้อน ประกอบกับ กระบวนการที่จะทำให้ได้ซึ่งปริมาณความร้อนที่สูงที่สุดที่เกิด ขึ้นในกระบวนการเปลี่ยนรูปพลังงานที่ได้รับจากแสงอาทิตย์ มาเป็นพลังงานความร้อนจึงเป็นที่มาและความสำคัญของ การศึกษางานวิจัยนี้

แผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบ พาราโบลา

แผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา (Compound Parabolic Concentrating (CPC) reflector) เป็น ดัวเพิ่มความเข้มรังสีอาทิตย์แบบอยู่กับที่ (Fixed concentrator) (ไม่ต้องเคลื่อนที่ตามดวงอาทิตย์ตลอดเวลา) ประกอบกับ แผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลายังมีพื้นที่ ผิวสะท้อนรังสีอาทิตย์มากกว่าแบบเคลื่อนที่ตามดวงอาทิตย์ (Focusing concentrator) ดังนั้น จึงสามารถยอมให้มีความ ผิดพลาดของรูปแบบผิวสะท้อนรังสีอาทิตย์ได้มากขึ้น โดย แผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลามีอัตราส่วน รวมรังสีตามทฤษฏี (Concentration Ratio (CR)) ขึ้นอยู่กับ ตัวกลางระหว่างตัวดูดรังสี ผิวสะท้อนรังสี และมุมรับรังสี (Acceptance angle) โดยอัตราส่วนรวมรังสีตามทฤษฎีแสดง ดังสมการที่ (1) (Duffie & Beckman, 2013) ดังนี้

$$CR = \frac{n}{\sin\theta_c} \tag{1}$$

เมื่อ n คือ สัมประสิทธิ์การหักเหแสง (Index of refraction) ของตัวกลางที่อยู่ระหว่างตัวรับรังสีกับรางสะท้อน รังสี และ คือ ครึ่งมุมรับรังสี (Acceptance half angle) โดยความสัมพันธ์ของความสูง (H) ความยาวโฟกัส (f) ครึ่ง มุมรับรังสี (α_c) เส้นรอบรูปของเป้ารับรังสี (เฉพาะด้านที่รับ รังสี (a)) ของแผ่นสะท้อนรังสีอาทิตย์ และสมการส่วนโค้ง รูปพาราโบลา (BC) แสดงดังสมการที่ (2) ถึงสมการที่ (5) และ Figure 1 เมื่อ r คือ รัศมี d คือ ขนาดเส้นผ่านศูนย์กลางท่อ และ β คือ มุมจุดศูนย์กลางท่อ (Angle central pipe)

$$H = \frac{a}{2} \left(\frac{1}{2} + \frac{1}{\pi \sin \theta_c} + \frac{1}{\tan \theta_c \sin \theta_c} \right)$$
(2)

$$f = \frac{a}{r} \tag{3}$$

$$BC = \beta\left(\frac{d}{2}\right) \tag{4}$$

$$BC = \frac{\left(\frac{d}{2}\right)\left[\left(\beta + \theta_{c} + \frac{\pi}{2}\right) - \cos(\beta - \theta_{c})\right]}{1 + \sin(\beta + \theta_{c})}$$
(5)

เมื่อ $\theta_C + \frac{\pi}{2} \le \beta \le 3\frac{\pi}{2} - \theta_C$

Figure 1 Cross section of a nontruncated CPC (Mgbemene *et al.*, 2010)

เครื่องทำน้ำร้อนพลังงานแสงอาทิตย์

เครื่องทำน้ำร้อนพลังงานแสงอาทิตย์ (Solar water heating system (SWHS)) อุปกรณ์หลักประกอบไปด้วย ตัวเก็บรังสีอาทิตย์ (Solar collectors) ถังน้ำร้อน และปั๊มน้ำ หมุนเวียน โดยตัวเก็บรังสีอาทิตย์จะทำหน้าที่รับพลังงานจาก แสงอาทิตย์และถ่ายเทความร้อนที่ได้รับให้กับน้ำที่ทำหน้าที่ เป็นตัวกลางในการรับความร้อน จากนั้นน้ำที่มีอุณหภูมิสูงขึ้น (น้ำร้อน) จะถูกนำไปใช้งาน และ/หรือ ถูกนำไปเก็บสะสมไว้ใน ถังน้ำร้อนที่มีการหุ้มฉนวนกันความร้อนก่อนที่จะถูกดึงออก ไปใช้งานต่อไป โดยปริมาณความร้อนที่ผลิตได้จากเครื่องทำ น้ำร้อนพลังงานแสงอาทิตย์ (\dot{q}_{coll}) และประสิทธิภาพเชิงความ ร้อนของเครื่องทำน้ำร้อนพลังงานแสงอาทิตย์ (η_{swhs}) สามารถ แสดงได้ดังสมการที่ (6) และสมการที่ (7) ตามลำดับ ดังนี้

$$\dot{Q}_{Coll} = \left(\frac{M}{Time}\right)c_p(T_{Final} - T_{Initial})$$
(6)

$$\eta_{SWHS} = \frac{\dot{Q}_{Coll}}{A_c I_T} \times 100 \tag{7}$$

เมื่อ *M* คือ ปริมาณน้ำในถัง (Liter, L) *TIME* คือ ระยะเวลาที่ใช้ในการผลิตน้ำร้อน (second, s) *T_{Initial}* และ *T_{Final}* คือ อุณหภูมิน้ำในถังเริ่มต้น และอุณหภูมิน้ำในถังสุดท้าย (°C) *A_c* คือ พื้นที่ตัวเก็บรังสีอาทิตย์ (m²) (สำหรับงานวิจัยนี้ใช้พื้นที่ รวม หรือ Gross area ในการวิเคราะห์) และ *I_T* คือ ปริมาณ รังสีอาทิตย์ที่ได้รับ (รังสีอาทิตย์ชนิดรังสีรวม (Total solar radiation)) (W/m²-day)

วิธีดำเนินการวิจัย

งานวิจัยนี้จะเป็นการศึกษาความเป็นไปได้ของการ เพิ่มประสิทธิภาพเชิงความร้อนของตัวเก็บรังสีอาทิตย์แบบ หลอดแก้วสุญญากาศชนิดท่อความร้อนด้วยการติดตั้งแผ่น สะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา รายละเอียด ของวิธีการดำเนินงานวิจัยแสดงดังนี้

ตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศชนิด ท่อความร้อน

ตัวเก็บรับสีอาทิตย์แบบหลอดแก้วสุญญากาศชนิด ท่อความร้อน (Heat pipe evacuated-tube solar collectors) ที่มีขนาดเส้นผ่านศูนย์กลางภายในและภายนอกเท่ากับ 33.80 mm และ 47.20 mm ตามลำดับ ที่มีความยาว 1,836 mm จำนวน 8 ท่อ ได้ถูกนำมาใช้ในระบบผลิตน้ำร้อนด้วย พลังงานแสงอาทิตย์ (สาเหตุที่ต้องใช้หลอดแก้วสุญญากาศ จำนวน 8 ท่อ ก็เนื่องมาจากเมื่อนำแผ่นสะท้อนรังสีอาทิตย์แบบ รูปประกอบพาราโบลามีความกว้าง 152.76 mm (มุมมอง ภาพด้านบนจาก Figure 2) มาต่อประกอบร่วมกันเป็นตัวเก็บ รังสีอาทิตย์แบบหลอดแก้วสุญญากาศชนิดท่อความร้อนที่มี การติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา จะทำให้มีมิติของขนาดพื้นที่ตัวเก็บรังสีอาทิตย์รวม (Gross area) ประมาณ 2.20 m² ที่ซึ่งเป็นขนาดที่นิยมใช้งานทั่วไป และมีขายตามท้องตลาด)

2. แผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา

แผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา ที่ทำจากวัสดุที่แตกต่างกัน 2 วัสดุ ที่มีความหนา 3 mm คือ (1) แผ่นสังกะสี และ (2) แผ่นสแตนเลส (ทั้งนี้ในงานวิจัยนี้ ไม่ได้นำวัสดุชนิดแผ่นอลูมิเนียมมาใช้งาน เนื่องจากในงาน ้วิจัยที่ผ่านมา (สรวิศ สอนสารี, 2562) พบว่า แผ่นอลูมิเนียม เป็นวัสดุที่ขึ้นเป็นรูปทรงรูปประกอบพาราโบลาได้ไม่ดี ้จึงไม่เหมาะที่จะนำมาใช้งาน) ได้ถูกนำมาใช้เพื่อเปรียบเทียบ ้ความสามารถในการเพิ่มคุณภาพความร้อนของน้ำร้อนที่ ผลิตได้จากเครื่องทำน้ำร้อนพลังงานแสงอาทิตย์ โดยในการ ออกแบบได้กำหนดให้มุมจุดศูนย์กลางท่อ (Angle central pipe (β)) และครึ่งมุมรับรังสี (Half angle) เท่ากับ 120.0° และ 11.5° ตามลำดับ (สรวิศ สอนสารี, 2562) จากนั้นได้ ตัดความสูงของแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบ พาราโบลาให้มีความสูง 86.80 mm และความยาว 1,200 mm (ตามความยาวของวัสดุแผ่นที่มีขายตามท้องตลาด) แสดง ดัง Figure 2 และ Figure 3 ตามลำดับ

Figure 2 Cross section of a CPC reflectors that has been designed and fabricated

Figure 3 Length of the CPC reflectors when installed

3. การดำเนินการทดสอบ

การดำเนินการทดสอบจะเป็นการทดสอบเปรียบ เทียบพลังงานความร้อน และอุณหภูมิน้ำร้อนที่ผลิตได้จาก เครื่องทำน้ำร้อนพลังงานแสงอาทิตย์ ที่มีการใช้ดัวเก็บรังสี อาทิตย์แตกต่างกัน 3 รูปแบบ คือ (1) ดัวเก็บรังสีอาทิตย์แบบ หลอดแก้วสุญญากาศชนิดท่อความร้อน (ไม่มีการติดตั้งแผ่น สะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา) (2) ตัวเก็บ รังสีอาทิตย์แบบหลอดแก้วสุญญากาศชนิดท่อความร้อน ที่มี การติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา ที่ทำจากแผ่นสังกะสี และ (3) ตัวเก็บรังสีอาทิตย์แบบ หลอดแก้วสุญญากาศชนิดท่อความร้อน ที่มีการติดตั้งแผ่น สะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลา สแตนเลส

ในการทดสอบนั้นได้กำหนดให้ปริมาณน้ำที่อยู่ในถัง ้น้ำร้อนที่มีการหุ้มฉนวนอย่างดีมีปริมาณน้ำในถังเท่ากับ 100 ลิตร และแต่ละระบบกำหนดให้มีอัตราการไหลของน้ำร้อนผ่าน ์ ตัวเก็บรังสีอาทิตย์ คือ 1 ถึง 3 LPM (ลิตรต่อนาที) (โดยเพิ่ม ้ครั้งละ 1 LPM) (สาเหตุสำคัญของการเลือกย่านอัตราการไหล ดังกล่าว คือ เป็นการเลือกอัตราการใหลที่มีอัตราการใหลจาก ์ ต่ำ (1 LPM) ไปหาอัตราการไหลสูง (3 LPM) ที่ซึ่งจะทำให้เห็น แนวโน้มของอัตราความร้อนและอุณหภูมิน้ำร้อนที่เครื่องทำ ้น้ำร้อนผลิตได้ และจะเป็นแนวทางในการนำอัตราการไหลไป ใช้ประโยชน์ต่อไปได้ในอนาคต) ไดอะแกรมการทดสอบอย่าง ้ง่ายแสดงดัง Figure 4 การทดสอบได้ดำเนินการบันทึกข้อมูล ต่างๆ ตลอดช่วงระยะเวลาระหว่างวัน ตั้งแต่เวลาเวลา 9.00 ถึง 15.30 น. ดังนี้ อุณหภูมิแวดล้อม ($T_{\scriptscriptstyle Amb}$) อุณหภูมิน้ำเริ่ม ์ ดัน (T_{Initial}) อุณหภูมิน้ำสุดท้าย (T_{Final}) อุณหภูมิน้ำภายในถัง น้ำร้อนตลอดช่วงระยะเวลาระหว่างวัน ด้วยสายเทอร์โมคัปเปิล Type K และปริมาณรังสีอาทิตย์ (I_x) ด้วยเซลล์อ้างอิง (Reference cell) ที่ถูกสอบเทียบกับเครื่องวัดความเข้ม รังสีอาทิตย์ (Solar power meter) ยี่ห้อ CEM รุ่น LA-107 โดยข้อมูลต่างๆ จะถูกบันทึกด้วยเครื่องบันทึกอัตโนมัติยี่ห้อ HIOKI รุ่น LR8431-20 ทุกๆ 1 นาที (ตัวอย่างของอุปกรณ์ ต่างๆ แสดงดัง Figure 5) ทั้งนี้ในการทดสอบตัวเก็บรังสี อาทิตย์จะวางทำมุมเอียง 17° กับแนวระดับ (ตำแหน่งเดียว กับตำแหน่งละติดจูดของจังหวัดพิษณุโลก ซึ่งเป็นที่ตั้งของ สถานที่ทดสอบ) และหันหน้าไปทางทิศใต้

Figure 4 Single line diagram of the solar water heating system (SWHS)

Thermal efficiency enhancement of a heat pipe evacuated-tube solar 95 collector by installing a compound parabolic concentrating reflector

(a) Thermocouple

(c) Storage tank

(e) Water pump

(b) Data logger

(d) Flow meter

(f) Reference cell

ผลการศึกษา และวิจารณ์ผลการศึกษา

ผลการทดสอบเครื่องทำน้ำร้อนพลังงานแสงอาทิตย์ ทั้ง 3 กรณี สามารถแสดงผลการศึกษาได้ดังนี้

กรณี ตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศ ชนิดท่อความร้อน (ไม่มีการติดตั้งแผ่นสะท้อนรังสี อาทิตย์แบบรูปประกอบพาราโบลา)

ผลการศึกษาแสดงดัง Table 1 และ Figure 6 พบ ว่า อุณหภูมิของน้ำร้อนที่ระบบผลิตได้ตลอดช่วงระยะเวลา ระหว่างวันนั้นจะขึ้นอยู่กับปริมาณรังสีอาทิตย์ในแต่ละช่วง เวลา โดยที่อัตราการไหลของน้ำหมุนเวียนในระบบเท่ากับ 1 LPM ระบบจะมีประสิทธิภาพเชิงความร้อนเฉลี่ยสูงที่สุดอยู่ที่ ร้อยละ 18.30 รองลงมา คือ ที่อัตราการไหลของน้ำหมุนเวียน 2 และ 3 LPM จะมีประสิทธิภาพเชิงความร้อนเฉลี่ยอยู่ที่ ร้อยละ 15.70 และ 15.21 ตามลำดับ โดยที่อัตราการไหลของ น้ำหมุนเวียนในระบบเท่ากับ 1 LPM ระบบจะสามารถเพิ่ม อุณหภูมิน้ำร้อนเฉลี่ยเริ่มต้น 32.25 °C ไปเป็น 44.15 °C หรือ คิดเป็นพลังงานความร้อนที่ระบบสามารถผลิตได้ 4,974.20 kJ เมื่อได้รับปริมาณรังสีอาทิตย์ 527.97 W/m² ที่อัตราการไหล ของน้ำหมุนเวียนในระบบเท่ากับ 2 LPM ระบบจะสามารถเพิ่ม อุณหภูมิน้ำร้อนเฉลี่ยเริ่มต้น 32.90 °C ไปเป็น 46.45 °C หรือ คิดเป็นพลังงานความร้อนที่ระบบสามารถผลิตได้ 5,663.90 kJ เมื่อได้รับปริมาณรังสีอาทิตย์ 700.92 W/m² และที่อัตรา การไหลของน้ำหมุนเวียนในระบบเท่ากับ 3 LPM ระบบจะ สามารถเพิ่มอุณหภูมิน้ำร้อนเฉลี่ยเริ่มต้น 33.49 °C ไปเป็น 48.30 °C หรือคิดเป็นพลังงานความร้อนที่ระบบสามารถผลิต ได้ 6,193.37 kJ เมื่อได้รับปริมาณรังสีอาทิตย์ 791.48 W/m²

Date	Flow	T _{Initial}	T _{Final}	l _,	Q _{coll}	Eff
	(LPM)	(°C)	(°C)	(W/m²)	(kJ)	(%)
14-Aug-2021	1	31.57	43.40	525.98	4,946.33	18.27
25-Aug-2021	1	32.93	44.90	529.95	5,002.07	18.33
Average		32.25	44.15	527.97	4,974.20	18.30
19-Aug-2021	2	33.43	47.00	693.63	5,670.87	15.88
20-Aug-2021	2	32.37	45.90	708.21	5,656.93	15.52
Average		32.90	46.45	700.92	5,663.90	15.70
23-Aug-2021	3	33.30	48.40	807.89	6,311.80	15.18
24-Aug-2021	3	33.67	48.20	775.07	6,074.93	15.23
Average		33.49	48.30	791.48	6,193.37	15.21

Table 1 Initial temperature, final temperature, thermal energy, and efficiency of the systems (without CPC reflectors)

กรณี ตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศ ชนิดท่อความร้อน ที่มีการดิดตั้งแผ่นสะท้อนรังสีอาทิตย์ แบบรูปประกอบพาราโบลาที่ทำจากแผ่นสังกะสี

ผลการศึกษาแสดงดัง Table 2 และ Figure 7 พบ ว่า ที่อัตราการไหลของน้ำหมุนเวียนในระบบเท่ากับ 1 LPM ระบบจะมีประสิทธิภาพเชิงความร้อนเฉลี่ยสูงที่สุดอยู่ที่ร้อยละ 18.80 รองลงมา คือ ที่อัตราการไหลของน้ำหมุนเวียน 2 และ 3 LPM จะมีประสิทธิภาพเชิงความร้อนเฉลี่ยอยู่ที่ร้อยละ 17.76 และ 14.86 ตามลำดับ โดยที่อัตราการไหลของน้ำหมุนเวียน ในระบบเท่ากับ 1 LPM ระบบจะสามารถเพิ่มอุณหภูมิน้ำร้อน เฉลี่ยเริ่มต้น 30.87 °C ไปเป็น 43.00 °C หรือคิดเป็นพลังงาน ความร้อนที่ระบบสามารถผลิตได้ 5,071.74 kJ (0.22 kW) เมื่อได้รับปริมาณรังสีอาทิตย์ 522.32 W/m² ที่อัตราการไหล ของน้ำหมุนเวียนในระบบเท่ากับ 2 LPM ระบบจะสามารถเพิ่ม อุณหภูมิน้ำร้อนเฉลี่ยเริ่มต้น 29.93 °C ไปเป็น 43.65 °C หรือ คิดเป็นพลังงานความร้อนที่ระบบสามารถผลิตได้ 5,733.57 kJ (0.25 kW) เมื่อได้รับปริมาณรังสีอาทิตย์ 630.64 W/m² และ ที่อัตราการใหลของน้ำหมุนเวียนในระบบเท่ากับ 3 LPM ระบบ จะสามารถเพิ่มอุณหภูมิน้ำร้อนเฉลี่ยเริ่มต้น 29.75 °C ไปเป็น 43.30 °C หรือคิดเป็นพลังงานความร้อนที่ระบบสามารถผลิต ได้ 5,663.85 kJ เมื่อได้รับปริมาณรังสีอาทิตย์ 738.57 W/m²

Figure 6 Solar radiation (W/m²), ambient temperature (°C), and hot water temperature (°C) when the solar water heating system (SWHS) without CPC reflectors

Date	Flow	T Initial	T Final	Ļ	Q _{coll}	Eff
	(LPM)	(°C)	(°C)	(W/m²)	(kJ)	(%)
2-Sep-2021	1	31.80	42.20	462.94	4,347.20	18.24
3-Sep-2021	1	29.93	43.80	581.70	5,796.27	19.36
Average		30.87	43.00	522.32	5,071.74	18.80
6-Sep-2021	2	29.63	43.70	592.37	5,879.87	19.28
7-Sep-2021	2	30.23	43.60	668.90	5,587.27	16.23
Average		29.93	43.65	630.64	5,733.57	17.76
11-Sep-2021	3	29.50	40.90	633.61	4,765.20	14.61
18-Sep-2021	3	30.00	45.70	843.53	6,562.50	15.11
Average		29.75	43.30	738.57	5,663.85	14.86

 Table 2
 Initial temperature, final temperature, thermal energy, and efficiency of the systems (with CPC reflectors and galvanized sheet are used)

กรณี ตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศ ชนิดท่อความร้อน ที่มีการติดตั้งแผ่นสะท้อนรังสีอาทิตย์ แบบรูปประกอบพาราโบลาที่ทำจากแผ่นสแตนเลส

ผลการศึกษาแสดงดัง Table 3 และ Figure 8 พบว่า ที่อัตราการไหลของน้ำหมุนเวียนในระบบเท่ากับ 1 LPM ระบบ จะมีประสิทธิภาพเชิงความร้อนเฉลี่ยสูงที่สุดอยู่ที่ร้อยละ 13.97 รองลงมา คือ ที่อัตราการใหลของน้ำหมุนเวียน 2 และ 3 LPM จะมีประสิทธิภาพเฉลี่ยอยู่ที่ร้อยละ 13.81 และ 13.49 ตาม ้ลำดับ โดยที่อัตราการไหล[้]ของน้ำหมุนเวียนในระบบเท่ากับ 1 LPM ระบบจะสามารถเพิ่มอุณหภูมิน้้ำร้อนเฉลี่ยเริ่มต้น 32.25 °C ไปเป็น 47.55 °C หรือคิดเป็นพลังงานความร้อนที่ระบบ สามารถผลิตได้ 6,395.40 kJ เมื่อได้รับปริมาณรังสีอาทิตย์ 889.31 W/m² ที่อัตราการไหลของน้ำหมุนเวียนในระบบเท่ากับ 2 LPM ระบบจะสามารถเพิ่มอุณหภู[่]มิน้ำร้อนเฉลี่ยเริ่มต้น 32.35 °C ไปเป็น 46.75 °C หรือคิดเป็นพลังงานความร้อน ์ที่ระบบสามารถผลิตได้ 6,019.20 kJ เมื่อได้รับปริมาณรังสี อาทิตย์ 847.88 W/m² และที่อัตราการใหลของน้ำหมุนเวียน ในระบบเท่ากับ 3 LPM ระบบจะสามารถเพิ่มอุณหภูมิ่น้ำร้อน เฉลี่ยเริ่มต้น 33.14 °C ไปเป็น 40.05 °C หรือคิดเป็นพลังงาน

ความร้อนที่ระบบสามารถผลิตได้ 5,378.27 kJ เมื่อได้รับ ปริมาณรังสีอาทิตย์ 774.44 W/m²

พิจารณาเปรียบเทียบผลการศึกษาเมื่อมีการติดตั้ง และไม่ติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบ พาราโบลาดังที่ได้กล่าวไปแล้วข้างต้น พบว่า ที่อัตราการไหล ของน้ำหมุนเวียนในระบบต่ำสุด 1 LPM จะทำให้ระบบผลิตน้ำ ้ร้อนมีประสิทธิภาพเชิงความร้อนสูงที่สุด เนื่องจากที่อัตราการ ไหลของน้ำหมุนเวียนในระบบต่ำจะช่วยให้ของไหลทำงานใน ระบบ (น้ำ) มีโอกาสที่จะรับความร้อนที่ถูกถ่ายเทจากตัวเก็บ รังสีอาทิตย์ได้สูงกว่ากรณีที่อัตราการไหลของน้ำหมุนเวียนใน ระบบมีอัตราการไหลที่สูง (เช่น จากสมการหาอัตราความร้อน $\dot{Q} = \dot{m}_{w}c_{p}(T_{out} - T_{in})$ เมื่อกำหนดให้ $\dot{Q} = 1$ kW, $c_{p} = 4.18$ kJ/ kg - °C และ $T_{in} = 35$ °C เมื่ออัตราการใหลมีความแตกด่าง กัน 2 อัตราการไหล คือ $\dot{m}_{v} = I$ LPM และ $\dot{m}_{v} = 3$ LPM จากนั้นหาอุณหภูมิน้ำออก (T_{out}) เมื่ออัตราการไหลของน้ำ แตกต่างกัน 2 อัตราการใหล จากสมการ $T_{out} = T_{in} + (\dot{Q} / \dot{m}_w c_p)$ ที่ได้จากสมการข้างต้น พบว่า ที่อัตราการไหลของน้ำ 1 LPM และ 3 LPM อุณหภูมิน้ำออก (T₀,,) จะมีค่าเท่ากับ 49.35 °C และ 39.78 ⁰C ตามลำดับ)

Figure 7 Solar radiation (W/m²), ambient temperature (°C), and hot water temperature (°C) when the solar water heating system (SWHS) with CPC reflectors (galvanized sheet are used)

Figure 8 Solar radiation (W/m²), ambient temperature (°C), and hot water temperature (°C) when the solar water heating system (SWHS) with CPC reflectors (stainless sheet are used)

	Flow	T Initial	T _{Final}	l _t	Q _{coll}	Eff
Date	(LPM)	(°C)	(°C)	(W/m²)	(kJ)	(%)
29-Sep-2021	1	31.43	46.70	893.76	6,381.47	13.87
30-Sep-2021	1	33.07	48.40	884.86	6,409.33	14.07
Average		32.25	47.55	889.31	6,395.40	13.97
4-Oct-2021	2	32.00	46.60	822.68	6,102.80	14.41
5-Oct-2021	2	32.70	46.90	873.08	5,935.60	13.21
Average		32.35	46.75	847.88	6,019.20	13.81
6-Oct-2021	3	33.77	34.50	763.94	5,280.73	13.43
7-Oct-2021	3	32.50	45.60	784.93	5,475.80	13.55
Average		33 14	40.05	774 44	5 378 27	13 49

 Table 3
 Initial temperature, final temperature, thermal energy, and efficiency of the systems (with CPC reflectors and stainless sheet are used)

แสงอาทิตย์ที่มีการใช้ตัวเก็บรังสีอาทิตย์แบบหลอดแก้ว สุญญากาศชนิดท่อความร้อน โดยการติดดั้งแผ่นสะท้อนรังสี อาทิตย์แบบรูปประกอบพาราโบลา โดยในการศึกษาหลอด แก้วสุญญากาศที่มีขนาดเส้นผ่านศูนย์กลางภายในและเส้น ผ่านศูนย์กลางภายนอกเท่ากับ 33.80 mm และ 47.20 mm ที่มีความยาว 1,836 mm จำนวน 8 ท่อ ได้ถูกนำมาประยุกต์ ใช้ในงานวิจัยนี้ และในส่วนของแผ่นสะท้อนรังสีอาทิตย์นั้นใน การทดสอบได้ดำเนินการออกแบบและสร้างแผ่นสะท้อนรังสี อาทิตย์ที่ทำจากวัสดุต่างกัน 2 วัสดุ คือ แผ่นสังกะสี และแผ่น สแตนเลส ที่มีความสูงของรางสะท้อนเท่ากับ 86.80 mm

ผลการศึกษาประสิทธิภาพเชิงความร้อน และความ สามารถในการเพิ่มคุณภาพความร้อน (อุณหภูมิน้ำร้อน) พบว่า ระบบเมื่อมีการติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบ รูปประกอบพาราโบลาจะช่วยให้คุณภาพพลังงานความร้อน ที่ระบบผลิตได้สูงขึ้น (อัตราความร้อนที่ระบบผลิตได้และ อุณหภูมิน้ำร้อนที่ระบบผลิตได้สูงขึ้น) ที่อัตราการไหลของน้ำ หมุนเวียนในระบบมีค่าต่ำจะช่วยให้ประสิทธิภาพเชิงความร้อน ของระบบมีค่าสูงที่สุด และเมื่อเครื่องทำน้ำร้อนพลังงานแสง อาทิตย์ทำงานร่วมกับแผ่นสะท้อนรังสีอาทิตย์แบบรูปประกอบ พาราโบลาที่ทำจากแผ่นสังกะสีจะส่งผลให้ประสิทธิภาพเชิง ความร้อนของระบบมีค่าสูงที่สุด แต่อย่างไรก็ตามเมื่อพิจารณา คุณภาพความร้อน (อุณหภูมิของน้ำร้อนที่ระบบผลิตได้) จะได้ ้ว่าเครื่องทำน้ำร้อนพลังงานแสงอาทิตย์ที่ทำงานร่วมกับแผ่น สะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลาที่ทำจากแผ่น สแตนเลสจะส่งผลให้ระบบสามารถผลิตอุณหภูมิน้ำร้อนได้ สูงที่สุด เนื่องมาจากลักษณะของพื้นผิวที่มีความมันวาว ส่งผล

โดยตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศ ชนิดท่อความร้อนที่มีการติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูป ประกอบพาราโบลาที่ทำจากวัสดุสังกะสีจะทำให้ประสิทธิภาพ เชิงความร้อนของระบบมีค่าสูงที่สุดเมื่อเทียบกับกรณีอื่น ๆ โดยจะมีค่าประสิทธิภาพเชิงความร้อนอยู่ที่ร้อยละ 19.36 ซึ่ง ระบบสามารถเพิ่มอุณหภูมิน้ำเริ่มต้นจาก 29.93 °C ไปเป็น อุณหภูมิน้ำสุดท้าย 43.80 °C คิดเป็นพลังงานความร้อนที่ ระบบผลิตได้ 5,796.27 kJ เมื่อปริมาณรังสีอาทิตย์ที่ได้รับ เท่ากับ 581.70 W/m² (ดังแสดงใน Table 2 และ Figure 7 (b))

แต่อย่างไรก็ตามหากพิจารณาถึงอุณหภูมิน้ำสุดท้าย ที่สูงที่สุด พบว่า กรณีเครื่องทำน้ำร้อนพลังงานแสงอาทิตย์ ที่มีการใช้ตัวเก็บรังสีอาทิตย์แบบหลอดแก้วสุญญากาศชนิด ท่อความร้อนที่มีการติดตั้งแผ่นสะท้อนรังสีอาทิตย์แบบรูป ประกอบพาราโบลาที่ทำจากวัสดุสแตนเลสจะมีความเหมาะ สมที่สุด (เนื่องจากแสตนเลสเป็นวัสดุที่มีความมันวาว ส่งผลให้ มีคุณสมบัติการสะท้อนของแสงที่ดีกว่าวัสดุที่เป็นแผ่นสังกะสี) โดยเมื่อกำหนดให้อัตราการไหลเวียนของน้ำในระบบมีอัตรา การไหล 1 LPM ระบบจะสามารถเพิ่มอุณหภูมิน้ำเริ่มต้นจาก 33.07 °C ไปเป็นอุณหภูมิน้ำสุดท้าย 48.40 °C เมื่อปริมาณ รังสีอาทิตย์ที่ได้รับเท่ากับ 884.86 W/m² และระบบจะสามารถ ผลิตพลังงานความร้อนได้เท่ากับ 6,409.33 kJ (แสดงดัง Table 3 และ Figure 8 (b))

สรุปผลการศึกษา

งานวิจัยนี้เป็นการศึกษาความเป็นไปได้ของการ เพิ่มประสิทธิภาพเชิงความร้อนของเครื่องทำน้ำร้อนพลังงาน ให้รังสีอาทิตย์ที่ตกกระทบบนแผ่นสะท้อนสามารถสะท้อนรังสี อาทิตย์ไปยังตัวรับรังสีอาทิตย์ได้เป็นอย่างดี

ทั้งนี้ในอนาคตผู้ดำเนินงานวิจัยมีความจำเป็นที่จะ ต้องพิจารณาความสูงของแผ่นสะท้อนรังสีอาทิตย์แบบรูป ประกอบพาราโบลาที่มีความแตกต่างกัน ซึ่งจะทำให้เห็นถึง ความแตกต่างและรวมถึงความสามารถของแผ่นสะท้อนรังสี อาทิตย์ที่จะส่งผลต่อการทำงานของระบบ อีกทั้งจะต้องมีการ พิจารณาในส่วนของการวิเคราะห์ผลทางด้านเศรษฐศาสตร์ที่ จะช่วยให้เกิดการตัดสินใจนำมาใช้งานต่อไปได้

กิตติกรรมประกาศ

งานวิจัยนี้ได้รับทุนอุดหนุนการวิจัยจากมหาวิทยาลัย ราชภัฏพิบูลสงคราม ประเภททุนพัฒนางานวิจัยเพื่อสร้าง ความมั่นคงเศรษฐกิจฐานราก ประจำปีงบประมาณ 2564

เอกสารอ้างอิง

- กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน. (2560). โครงการปรับปรุงแผนที่ศักยภาพพลังงานแสงอาทิตย์ จากภาพถ่ายดาวเทียมสำหรับประเทศไทย (ปี 2560) (pp. 6).
- กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน. (2563). แผนพัฒนาพลังงานทดแทนและพลังงานทางเลือก พ.ศ. 2561 - 2580 (AEDP2018) (pp. 43).
- สรวิศ สอนสารี. (2562). ผลของความสูงและวัสดุของ แผ่น สะท้อนรังสีอาทิตย์แบบรูปประกอบพาราโบลาที่มีผลต่อ การผลิตน้ำร้อนด้วยพลังงานแสงอาทิตย์. *วิศวกรรมสาร เกษมบัณฑิต, 9*(3), 168-183.
- Chamsa-ard, W., Sukchai, S., Sonsaree, S. and Sirisamphanwong, C. (2014). Thermal performance testing of heat pipe evacuated tube with compound parabolic concentrating solar collector by ISO 9806-1. *Energy Procedia, 56*, 237-246.
- Duffie, J.A. & Beckman, W.A. (2013). *Solar engineering of thermal processes*. John Wiley & Sons.
- Gao, C. & Chen, F. (2020). Model building and optical performance analysis on a novel designed compound parabolic concentrator. *Energy conversion and management, 209*, 112619.
- Jiang, C., Yu, L., Yang, S., Li, K., Wang, J., & Lund, P.D. (2020). A review of the compound parabolic concentrator (CPC) with a tubular absorber. *Energies*, 13(3), 695.

- Li, L., Wang, B., Pye, J. & Lipiński, W. (2020). Temperaturebased optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator. *Solar energy*, 206, 1018-1032.
- Mgbemene, C.A, Duffy, J., Sun, H. & Onyegegbu, S.O. (2010). Electricity generation from a compound parabolic concentrator coupled to a thermoelectric module. *Energy Sustainability*, 43208, 423-432.
- Pranesh, V., Velraj, R., Christopher, S. & Kumaresan, V. (2019). A 50 year review of basic and applied research in compound parabolic concentrating solar thermal collector for domestic and industrial applications. *Solar energy*, *187*, 293-340.
- Sonsaree, S., Asaoka, T., Jiajitsawat, S., Aguirre, H. & Tanaka, K. (2018). A small-scale solar Organic Rankine Cycle power plant in Thailand: Three types of non-concentrating solar collectors. *Solar energy*, *162*, 541-560.
- Thawonngamyingsakul, C. & Kiatsiriroat, T. (2012). Potential of a solar organic rankine cycle with evacuated-tube solar collectors as heat source for power generation in Thailand. *Energy Science and Technology, 4*(2), 25-35.
- Tian, M., Su, Y., Zheng, H., Pei, G., Li, G. & Riffat, S. (2018). A review on the recent research progress in the compound parabolic concentrator (CPC) for solar energy applications. *Renewable and sustainable energy reviews, 82*, 1272-1296.
- Vijayakumar, P., Kumaresan, G., Faizal, U M., Chandran, GR V. & Adharsh, KS V. (2019). Performance evaluation of compound parabolic concentrator with evacuated tube heat pipe. Paper presented at the IOP Conference Series: Earth and Environmental Science.
- Wu, Z., Wang, X., Sha, L., Li, X., Yang, X., & Ma, X. (2021). Performance analysis and multi-objective optimization of the high-temperature cascade heat pump system. *Energy*, 223, 120097.
- Xia, E. & Chen, F. (2020). Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator. *Renewable energy*, 153, 155-167.