ตัวกรองไฮเพอร์วิภัชหัยแบบอ่อนของพีชคณิตบีอีไฮเพอร์ Fuzzy Weak Hyper Filters of Hyper BE-Algebras

วรุจน์ นาคเสน¹ Warud Nakkhasen¹

Received: 5 October 2019; Revised: 3 March 2020; Accepted: 24 March 2020

บทคัดย่อ

ในบทความวิจัยนี้ได้แนะนำแนวคิดของตัวกรองไฮเพอร์วิภัชนัยแบบอ่อนในพีซคณิตบีอีไฮเพอร์ และได้ศึกษาสมบัติบางประการ ของตัวกรองไฮเพอร์วิภัชนัยแบบอ่อน จากนั้นได้แสดงว่าเซตของตัวกรองไฮเพอร์วิภัชนัยแบบอ่อนทั้งหมดของพีซคณิตบีอีไฮเพอร์ เป็นแลตทิซบริบูรณ์ที่มีการแจงแจง ยิ่งไปกว่านั้นได้จำแนกลักษณะเฉพาะของพีซคณิตบีอีไฮเพอร์นอเทอร์เรียน และพีซคณิต บีอีไฮเพอร์อาร์ทิเนียน โดยใช้ตัวกรองไฮเพอร์วิภัชนัยแบบอ่อน

คำสำคัญ: ตัวกรองไฮเพอร์วิภัชนัย ตัวกรองไฮเพอร์วิภัชนัยแบบอ่อน พีชคณิตบีอี พีชคณิตบีอีไฮเพอร์

Abstract

The aim of this work is to introduce the notion of fuzzy weak hyper filters in hyper BE-algebras and investigate some of their properties. This research shows that the set of all fuzzy weak hyper filters of hyper BE-algebras is a distributive complete lattice. Also, the concepts of Noetherian hyper BE-algebras and Artinian hyper BE-algebras are characterized by their fuzzy weak hyper filters.

Keywords: fuzzy hyper filter, fuzzy weak hyper filter, BE-algebra, hyper BE-algebra

¹ อาจารย์, ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม อำเภอกันทรวิชัย จังหวัดมหาสารคาม 44150

¹ Department of Mathematics, Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand

¹ Corresponding author: E-mail: warud.n@msu.ac.th

362 Warud Nakkhasen J Sci Technol MSU

Introduction

The fuzzy set was introduced by Zadeh¹ as a function from a nonempty set X to the unit interval [0,1]. Later, many researchers have discussed the generalizations of the concepts of fuzzy sets with applications in computing, logic and many ramifications of pure and applied mathematics. Kim and Kim² introduced the notion of BE-algebras, as a generalization of BCK-algebras³ and BCI-algebras⁴. In 2010, the concept of fuzzy ideals in BE-algebras was introduced and some of its properties were investigated by Song, Jun and Lee⁵. Then, Dymek and Walendziak⁶ studied and characterized the concept of fuzzy filters in BE-algebras.

The hyperstructure theory was introduced by Marty⁷ in 1934 as a generalization of ordinary algebraic structures. Radfar, Rezaei and Borumand Saeid⁸ applied the hyper theory to introduce the notion of hyper BE-algebras, as a generalization of BE-algebras. In 2015, Cheng and Xin⁹ investigated some types of hyper filters on hyper BE-algebras.

In this work, the concept of fuzzy weak hyper filters of hyper BE-algebras is introduced, and its properties are considered. Finally, the concepts of Noetherian hyper BE-algebras and Artinian hyper BE-algebras are characterized by their fuzzy weak hyper filters.

Preliminaries

Let X be a nonempty set. The mapping o, X x $X \rightarrow P^*(X)$, where $P^*(X)$ denotes the set of all nonempty subsets of H, is called a *hyperoperation*¹⁰⁻¹³ on H. The hyperstructure (H,o) is called a *hypergroupoid*. Let A and B be any two nonempty subsets of H and $x \in H$. Then, we denote

$$A\circ B=\bigcup_{a\in A,b\in B}a\circ b,$$

$$A\circ x=A\circ \{x\} \text{ and } x\circ B=\{x\}\circ B.$$

Let H be a nonempty set and $o: X \times X \to P^*(X)$ be a hyperoperation. Then (H,o,1) is called a *hyper BE-algebra*⁸ if it satisfies the following axioms:

(i)
$$x < 1$$
 and $x < x$;

(ii)
$$x \circ (y \circ z) = y \circ (x \circ z)$$
;

(iii)
$$x \in I \circ x$$
;

(iv)
$$1 < x \text{ implies } x = 1$$
;

for all $x, y, z \in H$, where the relation "<" is defined by x < y if and only if $I \in x \circ y$.

Example 2.1 8 Define the hyperoperation "o" on \mathbb{R} as follows:

$$x \circ y = \begin{cases} \{y\} & \text{if } x = 1; \\ \mathbb{R} & \text{otherwise.} \end{cases}$$

Then, $(\mathbb{R},o,1)$ is a hyper BE-algebra.

Example 2.2⁸ Let $X = \{1, a, b\}$. Define the hyperoperation "o" on as follows:

O	1	a	b
1	{1}	{a}	<i>{b}</i>
a	{1,a}	{1,a,b}	{1,a}
b	{1,a,b}	{a}	{1,a,b}

Then, (H,0,1) is a hyper BE-algebra.

Let F be a nonempty subset of a hyper BE-algebra H and $I \in F$. Then F is called:

- (i) a weak hyper filter⁸ of H if $x \circ y \subseteq F$ and $x \in F$, then $y \in F$, for all $x, y \in F$;
- (ii) a hyper filter^{β} of H if $x \circ y \approx F$ and $x \in F$, then $y \in F$, where $x \circ y \approx F$ means that $x \circ y \cap F \neq \emptyset$, for all $x, y \in H$.

Note that every hyper filter of a hyper BE-algebra H is a weak hyper filter of H, but the converse is not true in general⁸. In this paper, we will focus on weak hyper filters of hyper BE-algebras.

Lemma 2.3 If $\{F_i \colon i \in I\}$ is a chain of a family of weak hyper filters of a hyper BE-algebra H, then $\underset{i \in I}{\operatorname{UF}}_i$ is also a weak hyper filter of H.

Proof. Let $\bigcup_{i \in I} F_i$. Clearly, $I \in F$. Let $x,y \in H$ such that $x \circ y \subseteq F$ and $x \in F$. Then $x \circ y \subseteq F_i$ and $x \in F_i$ for some $i,j \in I$. Assume that $F_i \subseteq F_j$. It follows that $x \circ y \subseteq F_j$ and $x \in F_j$. Since F_j is a weak hyper filter of H, we have $y \in F_i \subseteq F$. Hence, F is a weak hyper filter of H.

A *fuzzy set*¹ of a nonempty set X is a mapping μ : $X \to [0,I]$. Then, the set $U(\mu;\alpha)=\{x \in X: \mu(x) \geq \alpha\}$ is called a *level subset* of μ . where $\alpha \in [0,I]$. Let μ and ν be any two fuzzy sets of a nonempty set X. Then $\mu \subseteq \nu$, means

that $\mu(x) \leq v(x)$, for all $x \in X$. In addition, the intersection and the union of μ and ν , denoted by $\mu \cap \nu$ and $\mu \cup \nu$, respectively, are defined by letting $x \in X$, $(\mu \cap \nu)$ $(x) = \min\{\mu(x), v(x)\}$ and $(\mu \cup \nu)(x) = \max\{\mu(x), v(x)\}$.

Results

In this section, we introduce the notion of fuzzy weak hyper filters of hyper BE-algebras, and we investigate some fundamental properties of fuzzy weak hyper filters in hyper BE-algebras.

Definition 3.1 A fuzzy set μ of a hyper BE-algebra H is called a *fuzzy weak hyper filter* of H if it satisfies the following conditions:

(i)
$$\mu(1) \ge \mu(x)$$
;

(ii)
$$\mu(x) \ge \min\{\inf \mu(z), \mu(y)\};$$

for all $x,y \in H$.

Example 3.2 Let $H=\{1,a,b\}$ be a set with a hyperoperartion "o" on defined as follows:

О	1	a	b
1	{1}	{ <i>a</i> , <i>b</i> }	<i>{b}</i>
а	{1}	{1,a}	{1,b}
b	{1}	{1,a,b}	{1}

Then, is a hyper BE-algebra⁸. We define a fuzzy set μ of H by $\mu(a) \le \mu(b) \le \mu(1)$. By routine computations, we have that μ is a fuzzy weak hyper filter of H.

Theorem 3.3 Let be a fuzzy set of a hyper BE-algebra H. Then μ is a fuzzy weak hyper filter of H if and only if its nonempty level subset $U(\mu;\alpha)=\{x\in H:\mu(x)\geq\alpha\}$ is a weak hyper filter of for all $\alpha\in[0,I]$.

Proof. Assume that μ is a fuzzy weak hyper filter of H. Let $\alpha \in [0,I]$ such that $U(\mu;\alpha) \neq \emptyset$. Then there exists $x_o \in U(\mu;\alpha)$ such that $\mu(x_o) \geq \alpha$. Since $\mu(I) \geq \mu(x_o)$, $I \in U(\mu;\alpha)$. Let $x,y \in H$ such that $x \circ y \subseteq U(\mu;\alpha)$ and $x \in U(\mu;\alpha)$. Then $\mu(z) \geq \alpha$, for all $z \in x \circ y$. Thus, $\mu(y) \geq \min\{\inf_{z \in x_o} \mu(z), \mu(x)\} \geq \alpha$, that is, $y \in U(\mu;\alpha)$. Hence, $U(\mu;\alpha)$ is a weak hyper filter of H.

Conversely, suppose that $\mu(I) \ge \mu(x_0) = \beta$ for some $x_0 \in H$ and $\beta \in [0,I]$. Then $U(\mu;\beta) \ne \emptyset$, and so $U(\mu;\beta)$ is a weak hyper filter of H. It follows that $I \in U(\mu;\beta)$, which implies that $\mu(I) \ge \beta$. This is a contradiction. Thus, $\mu(I) \ge \mu(x)$, for all $x \in H$. Suppose that $\mu(a) < \min\{\inf \mu(z), \mu(b)\}$

for some $a,b \in H$. Letting $\alpha = \frac{1}{2} \Big(\mu(a) + \min \Big\{ \inf_{z \in b \circ a} \mu(z), \mu(b) \Big\} \Big)$.

We have $\mu(a) < a < \min\{\inf_{z \in ba} \mu(z), \ \mu(b)\} \le \inf_{z \in ba} \mu(z)$ and $\alpha < \mu(b)$. Then $b \circ a \subseteq U(\mu; \alpha)$ and $b \in U(\mu; \alpha)$. Since is a weak hyper filter of H, we have $a \in U(\mu; \alpha)$, that is, $\mu(a) \ge \alpha$. This is a contradiction. We obtain that $\mu(a) \ge \min\{\inf_{z \in ba} \mu(z), \mu(b)\}$ for all $a,b \in H$. Therefore, μ is a fuzzy weak hyper filter of H.

Corollary 3.4 If μ is a fuzzy weak hyper filter of a hyper BE-algebra H, then the set $H_a = \{x \in H : \mu(x) \ge \mu(a)\}$ is a weak hyper filter of H for all $a \in H$.

Corollary 3.5 If μ is a fuzzy weak hyper filter of a hyper BE-algebra H, then the set $H_{\mu} = \{x \in H : \mu(x) = \mu(I)\}$ is a weak hyper filter of H.

Theorem 3.6 Let $F_1 \subset F_2 \subset \cdots F_n \subset \cdots$ be a strictly ascending chain of weak hyper filters of a hyper BE-algebra H and $\{t_n\}$ be a strictly decreasing sequence in [0,1]. Let μ be a fuzzy set of H, defined by $\mu(x)=$

$$\begin{cases} 0 & \text{if} & x \not\in F_n \\ t_n & \text{if} & x \in F_n - F_{n-1} \end{cases} \text{ for each } n \in \mathbb{N};$$

for all $x \in H$, where $F_0 = \emptyset$. Then μ is a fuzzy weak hyper filter of H.

Proof. Let $F = \bigcup_{n \in \mathbb{N}} F_n$. By Lemma 2.3, F is a weak hyper filter of H. Then $\mu(I) = t_1 \ge \mu(x)$, for all $x \in H$. Let $x, y \in H$. Thus, we can divide to be two cases, as follows.

Case 1: $x \notin F$. Then $y \circ x \notin F$ or $y \notin F$. There exists $a \in y \circ x$ such that $x \notin F$. Thus, $\mu(a) = 0$ or $\mu(y) = 0$. Hence, $\min\{\inf \mu(z), \mu(y)\}$.

Case 2: $x \in F_n$ - F_{n-1} for some n=1,2,... Then $y \circ x \not\subset F_{n-1}$ or $y \not\in F$. Thus, there exists $a \in y \circ x$ such that $a \not\in F_{n-1}$. We obtain that, $\inf_{z \in y, x} \mu(z) \le t_n$ or $\mu(y) \le t_n$. Therefore, $\min \left\{ \inf_{z \in y \circ x} \mu(z), \mu(y) \right\} \le t_n = \mu(x)$. Consequently, μ is a fuzzy weak hyper filter of H.

Let μ and v be fuzzy sets of a nonempty set X. The *cartesian product*¹⁴ of μ and v is defined by $(\mu x v)$ $(x, y) = \min\{\inf \mu(z), \mu(b), \text{ for all } x, y \in X.$

Theorem 3.7 Let H be a hyper BE-algebra. If μ and ν are fuzzy weak hyper filters of H, then μ x ν is a fuzzy weak hyper filter of H x H.

Proof. Assume that μ and ν are fuzzy weak hyper filters of H. Let $(x,y) \in H \times H$. Then

364 Warud Nakkhasen J Sci Technol MSU

$$\begin{split} &(\mu \times \nu)(1,1) = \min\{\mu(1),\nu(1)\} \geq \min\{\mu(x),\nu(y)\} \\ &= (\mu \times \nu)(x,y). \, \text{Now, let } (x_{l},y_{2}), (x_{2},y_{2}) \in H \, x \, H. \, \text{Then} \\ &(\mu,\nu)(x_{l},y_{l}) \\ &= \min\{\mu(x_{1}),\nu(y_{1})\} \\ &\geq \min\{\min\{\inf_{z_{1} \in x_{2} \circ x_{1}} \mu(z_{1}),\mu(x_{2})\}, \\ &\min\{\inf_{z_{2} \in y_{2} \circ y_{1}} \nu(z_{2}),\nu(y_{2})\}\} \\ &\geq \min\{\inf_{z_{1} \in x_{2} \circ x_{1}} \min\{\mu(z_{1}),\nu(z_{2})\}, \\ &\sum_{z_{2} \in y_{2} \circ y_{1}} \min\{\mu(x_{2}),\nu(y_{2})\}\}\} \\ &\geq \min\{\inf_{(z_{1},z_{2}) \in (x_{2},y_{2}) \circ (x_{1},y_{1})} (\mu \times \nu) \, (z_{1},z_{2}), \\ &(\mu \times \nu)(x_{2},y_{2})\}. \end{split}$$

Therefore, $\mu x \nu$ is a fuzzy weak hyper filter of Hx H.

Let be a fuzzy set of a nonempty set X, $\alpha \in [0,1-\sup \mu(x)]$ and $\beta \in [0,1]$. Then:

- (i) the mapping μ^{T}_{a} : $X \rightarrow [0,1]$ is called a fuzzy translation¹⁵ of μ if $\mu^{\mathrm{T}}_{a}(x) = \mu(x) + \alpha$, for all $x \in X$;
- (ii) the mapping μ^{M}_{β} : $X \rightarrow [0,1]$ is called a fuzzy multiplication of μ if $\mu^{\mathrm{M}}_{\beta}(x) = \beta \mu(x)$, for all $x \in X$;
- (iii) the mapping $\mu^{MT}_{\beta,\alpha}:X\to [0,1]$ is called a fuzzy magnified translation¹⁶ of μ if $\mu^{MT}_{\beta,\alpha}(x)=\beta\mu(x)+\alpha$, for all $x{\in}X$.

Theorem 3.8 Let H be a hyper BE-algebra, μ be a fuzzy set of H, $\alpha \in [0,1-\sup_{x\in H}\mu(x)]$ and $\beta{\in}[0,1]$. Suppose that $\mu^{MT}_{\beta,\alpha}$ is a fuzzy magnified translation of μ , with respect to α and β . Then μ is a fuzzy weak hyper filter of H if and only if $\mu^{MT}_{\beta,\alpha}$ is a fuzzy weak hyper filter of H.

Proof. Assume that μ is a fuzzy weak hyper filter of H. Let $a{\in}H$. Since $\mu(I){\geq}\mu(a)$, we have $\mu_{\beta,\alpha}^{MT}(1)=\beta\mu(1)+\alpha\geq\beta\mu(a)+\alpha=\mu_{\beta,\alpha}^{MT}(a)$, for all $a{\in}H$. Let $x,y{\in}H$. Then

$$\mu_{\beta,\alpha}^{MT}(x) = \beta\mu(x) + \alpha$$

$$\geq \beta \min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\} + \alpha$$

$$= \min\{\inf_{z \in y \circ x} (\beta\mu(z) + \alpha), \beta\mu(y) + \alpha\}$$

$$= \min\{\inf_{z \in y \circ x} \mu_{\beta,\alpha}^{MT}(z), \mu_{\beta,\alpha}^{MT}(y)\}.$$

Hence, $\mu^{MT}_{\beta,\alpha}$ is a fuzzy weak hyper filter of H.

Conversely, assume that $\mu^{MT}_{\beta,\alpha}$ is a fuzzy weak hyper filter of H. Let $x,y\in H$. Consider $\beta\mu(1)+\alpha=\mu^{MT}_{\beta,\alpha}(1)\geq\mu^{MT}_{\beta,\alpha}(x)=\beta\mu(x)+\alpha$ and

$$\beta\mu(x) + \alpha = \mu_{\beta,\alpha}^{MT}(x)$$

$$\geq \min\{\inf_{z \in y \circ x} \mu_{\beta,\alpha}^{MT}(z), \mu_{\beta,\alpha}^{MT}(y)\}$$

$$= \min\{\inf_{z \in y \circ x} (\beta\mu(z) + \alpha), \beta\mu(y) + \alpha\}$$

$$= \min\{\beta(\inf_{z \in y \circ x} \mu(z)) + \alpha, \beta\mu(y) + \alpha\}$$

$$= \beta\min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\} + \alpha.$$

Since $\beta > 0$ and $\alpha \ge 0$, we have $\mu(x) \ge \min \left\{ \inf_{z \in \mathcal{Y} \circ x} \mu(z), \mu(y) \right\}$ and $\mu(I) \ge \mu(x)$, for all $x, y \in H$. Hence, μ is a fuzzy weak hyper filter of H.

Corollary 3.9 Let H be a hyper BE-algebra, μ be a fuzzy set of H, $\alpha \in [0,1]$ - $\sup_{x \in X} p(x)$, and $\beta \in [0,1]$. Suppose that μ^T_{α} is a fuzzy translation and is a fuzzy multiplication of with respect to and , respectively. Then the following conditions are equivalent:

- (i) μ is a fuzzy weak hyper filter of H;
- (ii) μ_{a}^{T} is a fuzzy weak hyper filter of H;
- (iii) $\mu_{_{_{\rm B}}}^{\rm M}$ is a fuzzy weak hyper filter of H.

Theorem 3.10 If μ and ν are fuzzy weak hyper filters of a hyper BE-algebra H, then $\mu \cap \nu$ is a fuzzy weak hyper filter of H.

Proof. Assume that μ and ν are fuzzy weak hyper filters of a hyper BE-algebra H. Let $x,y \in H$. Then

$$(\mu \cap \nu)(1) = \min\{\mu(1), \nu(1)\}$$

 $\geq \min\{\mu(x), \nu(x)\} = (\mu \cap \nu)(x)$

and

$$(\mu \cap \nu)(x) = \min\{\mu(x), \nu(x)\}$$

$$\geq \min\{\min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\},$$

$$\min\{\inf_{z \in y \circ x} \nu(z), \nu(y)\}\}$$

$$= \min\{\inf_{z \in y \circ x} \{\min\{\mu(z), \nu(z)\}\},$$

$$\min\{\mu(y), \nu(y)\}\}$$

$$= \min\{\inf_{z \in y \circ x} (\mu \cap \nu)(z), (\mu \cap \nu)(y)\}.$$

Hence, $\mu \cap v$ is a fuzzy weak hyper filter of H.

Theorem 3.11 If μ and ν are fuzzy weak hyper filters of a hyper BE-algebra H such that $\mu \subseteq \nu$ or $\nu \subseteq \mu$, then $\mu \bigcup \nu$ is a fuzzy weak hyper filter of H.

Proof. Assume that μ and v and are fuzzy weak hyper filters of a hyper BE-algebra H such that $\mu \subseteq v$ or $v \subseteq \mu$. Let $x,y \in H$. Then

$$(\mu \cup \nu)(1) = \max\{\mu(1), \nu(1)\}$$

$$\geq \max\{\mu(x), \nu(x)\} = (\mu \cup \nu)(x).$$

Now.

$$(\mu \cup \nu)(x) = \max\{\mu(x), \nu(x)\}$$

$$\geq \max\{\min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\}, \\ \min\{\inf_{z \in y \circ x} \nu(z), \nu(y)\}\}$$

$$= \min\{\max\{\inf_{z \in y \circ x} \mu(z), \mu(y)\}, \\ \max\{\inf_{z \in y \circ x} \nu(z), \nu(y)\}\}$$

$$= \min\{\inf_{z \in y \circ x} \{\max\{\mu(z), \nu(z)\}\}, \\ \max\{\mu(y), \nu(y)\}\}$$

$$= \min\{\inf_{z \in y \circ x} (\mu \cup \nu)(z), (\mu \cup \nu)(y)\}.$$

In general, $\max\{\min\{\ \}\}\min\{\max\{\ \}\}$. Suppose for this case

$$\max\{\min\{\inf_{z\in y\circ x}\mu(z),\mu(y)\},\\ \min\{\inf_{z\in y\circ x}\nu(z),\nu(y)\}\}$$

$$\neq \min\{\max\{\inf_{z\in y\circ x}\mu(z),\mu(y)\},\\ \max\{\inf_{z\in y\circ x}\nu(z),\nu(y)\}\}.$$
Then there exists $\alpha\in[0,1]$ such that
$$\max\{\min\{\inf_{z\in y\circ x}\mu(z),\mu(y)\},\\ \min\{\inf_{z\in y\circ x}\nu(z),\nu(y)\}\}$$

$$<\alpha<\min\{\max\{\inf_{z\in y\circ x}\mu(z),\mu(y)\},\\ \max\{\inf_{z\in y\circ x}\nu(z),\nu(y)\}\}.$$

Thus, $\alpha < \min \left\{ \inf_{z \in y \circ x} \mu(z), \mu(y) \right\}$. On the other hand, $\min \left\{ \inf_{z \in y \circ x} \mu(z), \mu(y) \right\} < \alpha$, which is a contradiction. This completes the proof.

Then, we have the following corollary.

Corollary 3.12 Let $\{\mu_i:i\in\Lambda\}$ be a nonempty set of a family of fuzzy weak hyper filters of a hyper BE-algebra H, where Λ is an arbitrary indexed set. Then the following statements hold:

Next, we denote by FHF(H) the set of all fuzzy weak hyper filters of a hyper BE-algebra H. By Corollary 3.12, we obtain the following theorem.

Theorem 3.13 Let H be a hyper BE-algebra and $(FHF(H); \subseteq)$ be a totally ordered set by the set inclusion. Then $(FHF(H); \subseteq, \vee, \wedge)$ is a complete lattice, where

Lemma 3.14 Let H be a hyper BE-algebra and $(FHF(H);\subseteq)$ be a totally ordered set. Then $\mu \cap (\nu \cup \lambda) = (\mu \cap \nu) \cup (\mu \cap \lambda)$ and $\mu \cup (\nu \cap \lambda) = (\mu \cup \nu) \cap (\mu \cup \lambda)$,

for all $\mu, \nu, \lambda \in FHF(H)$.

Proof. Let $\mu,\nu,\lambda\in FHF(H)$ and $x\in H.$ Then $(\mu\cap(\nu\cup\lambda))$ (x)

$$= min\{\mu(x), (v \cup \lambda)(x)\}$$

$$= min\{\mu(x), max\{v(x), \lambda(x)\}\}$$

$$= max\{min\{\mu(x), v(x)\}, min\{\mu(x), \lambda(x)\}\}$$

$$= max\{(\mu \cap v)(x), (\mu \cap \lambda)(x)\}$$

$$= ((\mu \cap v) \cup (\mu \cup \lambda))(x).$$

Hence, $\mu \cap (\nu \cup \lambda) = (\mu \cap \nu) \cup (\mu \cap \lambda)$. Similarly, we can prove that $\mu \cup (\nu \cap \lambda) = (\mu \cup \nu) \cap (\mu \cup \lambda)$.

From Lemma 3.14, we have the following theorem.

Theorem 3.15 Let be a hyper BE-algebra and be a totally ordered set. Then is a distributive complete lattice.

Next, we characterize Noetherian hyper BEalgebras and Artinian hyper BE-algebras using their fuzzy weak hyper filters.

A hyper BE-algebra H is called *Noetherian* if H satisfies the ascending chain condition on weak hyper filters, that is, for any weak hyper filters F_1, F_2, F_3, \ldots of H, with $F_1 \subseteq F_2 \subseteq F_3 \subseteq \ldots \subseteq F_i \subseteq \ldots$

There exists $\mathbf{n}\!\in\!\mathbb{N}$ such that $F_i\!=F_i\!+\!1$ for all $i\!\geq\!n.$

A hyper BE-algebra H is called Artinian if H satisfies the descending chain condition on weak hyper filters, that is, for any weak hyper filters F_1, F_2, F_3, \ldots of H, with $F_1 \subseteq F_2 \subseteq F_3 \subseteq \ldots \subseteq F_i \subseteq \ldots$

There exists $\mathbf{n}\!\in\!\mathbb{N}$ such that $F_i\!=F_i\!+\!1$ for all $i\!\geq\!n$.

 366 Warud Nakkhasen J Sci Technol MSU

hyper filter μ of H, the set $Im(\mu) = \{\mu(x): x \in H\}$ is a well-ordered subset of [0,1].

Proof. Assume that H is Noetherian. Suppose that there exists a fuzzy weak hyper filter μ of H such that $\operatorname{Im}(\mu)$ is not a well-ordered subset of [0,1]. Then there exists a strictly infinite decreasing sequence $\{t_n\}_{n=1}^\infty$ such that $\mu(x_n)=t_n$ for some $x_n\in H$. Let $I_n=U(\mu;t_n)=\{x\in H: \mu(x)\geq t_n\}$. By Theorem 3.3, I_n is a weak hyper filter of H, for all $n\in\mathbb{N}$. Moreover, $I_1\subset I_2\subset I_3\subset\dots$ is a strictly infinite ascending chain of weak hyper filters of H. This is a contradiction that H is Noetherian. Therefore, $\operatorname{Im}(\mu)$ is a well-ordered subset of [0,1], for each fuzzy weak hyper filter μ of H.

Conversely, assume that for every fuzzy weak hyper filter μ of H, the set $Im(\mu)=\{\mu(x)\colon x\!\in\! H\}$ is a well-ordered subset of . Suppose that is not Noetherian. Then there exists a strictly infinite ascending chain $F_1\!\subset\! F_2\!\subset\! F_3\!\subset\! ...\!\subset\! F_n\!\subset\! ...$ of weak hyper filters of H. We define the fuzzy weak hyper filter of μ of H by

$$\mu(x) = \begin{cases} 0 & \text{if} & x \notin F_n & \text{for each } n \in \mathbb{N}; \\ \frac{1}{n} & \text{if} & x \in F_n - F_{n-1} & \text{for } n = 1, 2, \dots; \end{cases}$$

where $F_o=\varnothing$. By Theorem 3.6, μ is a fuzzy weak hyper filter of H, but $Im(\mu)$ is not a well-ordered subset of [0,1]. We get a contradiction. Consequently, H is Noetherian.

Corollary 3.17 Let H be a hyper BE-algebra. If for every fuzzy weak hyper filter μ of H such that $\mathrm{Im}(\mu)$ is a finite set, then H is Noetherian.

Theorem 3.18 Let H be a hyper BE-algebra and $T=\{t_{l},t_{2},...\}\cup\{0\}$, where $\{t_{n}\}_{n=1}^{\infty}$ is a strictly decreasing in [0,1]. Then the following conditions are equivalent:

- (i) *H* is Noetherian;
- (ii) for every fuzzy weak hyper filter μ of H, if $\operatorname{Im}(\mu) \subseteq T$, then there exists $k \in \mathbb{N}$ such that $\operatorname{Im}(\mu) \subseteq \{t_l, t_2, ..., t_k\} \cup \{0\}$.

Proof. (i) \Rightarrow (ii): Assume that H is a Noetherian. Let μ be a fuzzy weak hyper filter of H such that $\mathrm{Im}(\mu) \subseteq \mathrm{T}$. By Theorem 3.16, $\mathrm{Im}(\mu)$ is a well-ordered subset of [0,1]. Hence, there exists $k \in \mathbb{N}$ such that $\mathrm{Im}(\mu) \subseteq \{t_j, t_2, ..., t_k\} \cup \{0\}$.

(ii) \Rightarrow (i): Assume that for every fuzzy weak hyper filter μ of H, if $\mathrm{Im}(\mu) \subseteq T$, then there exists $k \in \mathbb{N}$ such that $\mathrm{Im}(\mu) \subseteq \{t_1, t_2, ..., t_k\} \cup \{0\}$. Suppose that H is not Noetherian. Then there exists a strictly ascending chain $F_1 \subset F_2 \subset F_3 \subset ...$ of weak hyper filters of H. We define a fuzzy set μ of H by

$$\mu(x) = \begin{cases} 0 & \text{if} & x \notin F_n & \text{for each } n \in \mathbb{N}; \\ t_n & \text{if} & x \in F_n - F_{n-1} & \text{for } n = 1, 2, \dots; \end{cases}$$

where $F_o = \emptyset$. By Theorem 3.6, μ is a fuzzy weak hyper filter of H. This is a contradiction with our assumption. Therefore, H is Noetherian.

Theorem 3.19 Let H be a hyper BE-algebra and $T=\{t_1,t_2,...\}\cup\{0\}$, where $\{t_n\}_{n=1}^{\infty}$ is a strictly increasing sequence in [0,1]. Then the following conditions are equivalent:

- (i) *H* is Artinian;
- (ii) for every fuzzy weak hyper filter μ of H, if $\mathrm{Im}(\mu) \subseteq T$, then there exists $k \in \mathbb{N}$ such that $\mathrm{Im}(\mu) \subseteq \{t_1, t_2, ..., t_k\} \cup \{0\}$.

Proof. (i) \Rightarrow (ii): Assume that H is Artinian. Let μ be a fuzzy weak hyper filter of H such that $\mathrm{Im}(\mu) \subseteq T$. Suppose that $t_{i_1} < t_{i_2} < \cdots < t_{i_m} < \ldots$ is a strictly increasing sequence of elements in $\mathrm{Im}(\mu)$. Let $I_m = U(\mu; \ t_{i_m})$ for $m = 1, 2, \ldots$ This implies that $I_1 \supset I_2 \supset \ldots \supset I_m \supset \ldots$ is a strictly descending chain of weak hyper filters μ of H, which is a contradiction that H is Artinian.

(ii) \Rightarrow (i): Assume that for every fuzzy weak hyper filter μ of H, if $\operatorname{Im}(\mu) \subseteq T$, then there exists $k \in \mathbb{N}$ such that $\operatorname{Im}(\mu) \subseteq \{t_1, t_2, ..., t_k\} \cup \{0\}$. Suppose that H is not Artinian. Then there exists a strictly descending chain $F_1 \supset F_2 \supset ... \supset F_n \supset ...$ of weak hyper filters of H. We define a fuzzy set μ in H by

$$\mu(x) = \begin{cases} 0 & \text{if} & x \notin F_1, \\ t_n & \text{if} & x \in F_n - F_{n+1} \\ 1 & \text{if} & x \in F_n \end{cases} \quad \text{for } n = 1, 2, \dots,$$

We have that $\mu(I) = 1 \ge \mu(x)$, for all $x \in H$. Next, let $x,y \in H$. Thus, we can divide to be three cases, as follows.

Case 1:
$$x \notin F_I$$
. Then $y \circ x \notin F_I$ or $y \notin F_I$.

Thus,

Case 2: $x \in F_n$ - F_{n+1} for some n=1,2,...Then $y \circ x \not\subset F_{n+1}$ or $y \not\in F_{n+1}$. We obtain that $\mu(y) \leq t_n$ or $\mu(z) \leq t_n$ for some $z \in y \circ x \backslash F_{n+1}$. So, $\min\{\inf_{z \in yx} \mu(z), \mu(y)\} \leq t_n = \mu(x)$..

 $\text{Case 3: } x \in F_n \text{ for all } n \in \mathbb{N}. \text{ Clearly, } \mu(x) = 1 \\ \geq \min\{\inf_{z \in \mathcal{L}} \mu(z), \mu(y)\}.$

Hence, μ is a fuzzy weak hyper filter of H. We have a contradiction with our assumption. Consequently, H is Artinian.

Corollary 3.20 Let H be a hyper BE-algebra. If for every fuzzy weak hyper filter μ of H, $Im(\mu)$ is a finite set, then H is Artinian.

Conclusions

The concept of fuzzy weak hyper filters in hyper BE-algebras is introduced and investigated. It was shown that the set of all fuzzy weak hyper filters of hyper BE-algebras is a distributive complete lattice. Also, the concepts of Noetherian hyper BE-algebras and Artinian hyper BE-algebras are characterized by their fuzzy weak hyper filters. In future work, we will study the concept of characterizations of fuzzy weak hyper filters in hyper BE-algebras.

References

- Zadeh LA, Fuzzy sets, Information and Control 1965
 ; 8(3): 338-353.
- Kim HS, Kim YH. On BE-algebras, Scientiae Mathematicae Japonicae 2007; 66(1): 113-116.
- Imai Y, Iséki K. On axiom systems of propositional calculi XIV, Proceeding of the Japan Academy 1966 ; 42: 19-22.
- Iséki K. An algebra related with a propositional calculus, Proceeding of the Japan Academy 1966 ; 42: 26-29.
- Song SZ, Jun BY, Lee KJ. Fuzzy ideals in BE-algebras, Bulletin of the Malaysian Mathematical Sciences Society 2010; 33(1): 147-153.
- Dymek G, Walendziak A. Fuzzy filters of BE-algebras, Mathematica Slovaca 2013; 63(5): 935-945.
- Marty F. Sur une generalization de la notion de group, Proceeding of 8th Congress des Mathematician Scandinave 1934; 45-49.

- Radfar A, Rezaei A, Borumand Saeid A. Hyper BE-algebras, Novi Sad of mathematics 2014; 44(2): 137-147.
- Cheng XY, Xin XL. Filter theory on hyper BEalgebras, Italian Journal of Pure and Applied Mathematics 2015; 35: 509-526.
- Corsini P. Prolegomena of hypergroup theory. USA:
 Aviani Editore; 1993.
- Vougiouklis T. Hyperstructures and their representations. USA: Handronic Press inc.; 1994.
- Corsini P, Leoreanu V. Applications of hyperstructures theory Advances Mathematics. Dordrecht: Kluwer Academic Publishers: 2003.
- Davvaz B, Leoreanu-Fotea V. Hyperring theory and applications. USA: International Academic Press; 2007.
- Bhattaccharya P, Mukherjee NP. Fuzzy relation and fuzzy groups, *Information and Sciences* 1985; 36: 267-282.
- Vasantha Kandasamy WB. Smarandache fuzzy algebra. Rehoboth: American Research Press; 2007.
- Sardar SK, Majumder SK. Fuzzy magnified translation on groups, Journal of Mathematics 2008; 1(2): 117-124.