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Abstract

Linear cohypersubstitutions of type T = (n) are mappings which map the n-ary co-operation symbols to linear coterms
of type T. Every linear cohypersubstitution O of type T = (n) induces a mapping S on the set of all linear coterms of
type T. The set of all linear cohypersubstitutions of type T under the binary operation o_ which is defined by 61 othY2

= 61 o 02 for all 61,62 € Cohyp'™(n) forms a monoid. In this paper, we characterize Green’s relations on Cohyp'(n).
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Introduction

Let A be a non-empty set and n be a positive integer.
The n-th copower A" is the Cartesian product A~ := nx A,
where n:=1,...,n. An element (i,a) in the copower
corresponds to the element a in the i-th copy of A, for
I <i=<n. A co-operation on A is a mapping f4:A—>A""
for some n > I ; the natural number n is called the arity
of the co-operation f4. We also need to recall that any
n-ary co-operation f* on set A can be uniquely expressed
as a pair (%, f,") of mappings, f*:A—>n and f,*:A—>A ;
the first mapping gives the labeling used by f* in mapping
elements to copies of A, and the second mapping tells

us what element of A is mapped to.

We shall denote by cO,™ = {f *|A—>A"}
the set of all n-ary co-operations defined on A, and
by cO,:= U _,cO,™ he set of all finitary co-operations
defined on A. An indexed coalgebra is a pair (A ;
(f*)..), where f* is a n-ary co-operation defined on
A, and 7 = (n,),_, for n.> I is called the type of the
coalgebra. Coalgebras were studied by Drbohlav’.
In®, the following superposition of co-operations was
introduced. If f*ecO,™ and g/,....g" ,e€cO,™ then
the k-ary co-operation f*[g*,...g" . A—>A" is
defined bya|—>((g“ﬁm))](f;‘(a)),(g“ﬁm))z()gf*(a)))forallaeA.
The co-operation f *[g*,....¢g"* ] is called the
superposition of f* and g *,....g* . It will also be denoted
by comp "(f*, g !.....8" ).

The injection co-operations ii"'A T A—>AY" are
special co-operations which are defined for each 0 <i<n-1
by il.”'A :A— A" with a+—> (i,a) for all acA. Then we get
a multi-based algebra ((cO,") .(comp," k,nz]’(iinﬂ)()sisn—l)’
called the clone of co-operations on A. In?, it is mentioned
that this algebra is a clone, i.e. it satisfies the three clone
axioms. In’, K. Denecke and K. Saengsura gave a full
proof of this fact and introduced the following coterms of
type 7 = (n,),_, were introduced. Let (f,)._, be an indexed
set of co-operation symbols such that for each iel. We
say that symbol f, has arity n, for iel. Let U{e ln>1,
neN, 0 <j<n-1} be a set of symbols which is disjoint
from the set {fi | iel}. We assign to each e the positive
integer n as its arity. Then coterms of type 7 are defined

as follows:
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(i) For every iel, the co-operation symbol f is

an n-ary coterm of type 7.

(i) Forevery n>1 and 0 <j<n-I, the symbol

e is an n-ary coterm of type 7.

(i) Ifz,..t, are n-ary coterms of type 7, then
fi[t/,...,tn’] is an n-ary coterm of type 7 and
if to,...,tn_’ , are m-ary coterms of type z, then
ej”[t ,-of, ] IS @an m-ary coterm of type t, for

everyiclandn=>1and 0<j=<n-I.

Let ¢cT” be the set of all n-ary coterms of
type 7 and let cT, "=gCsz) be the set of all (finitary)

coterms of type 7.

Definition 1.1 Let tecT, be a coterm and E(7)
= {e’ |e,.” occurs in tand O <i<n-I. Then t is a linear
coterm if for each e"eE(1), e/ occurs only once in 7.

We denote by cT' the set of all n-ary linear
coterms of type 7 and CT,”"-:UCT,”"'(") the set of all
(finitary) linear coterms of type 7.

We define a family of superposition operations
(S_m")m,nzz on this sequence, as follows.

Definition 1.2 The
Lin":cTt””'(")x (cT/™m)y—> cT'"™ is defined by induction

on the complexity of linear coterm definition, as follows:

operation

(i) If ¢ is an n-ary linear coterm of type 1,
lyend
T for 0 < j < n-1 and E(tj)mE(tk)=® for
Jjke{0,...n-1}and j=k, then S "(e/t,,...t, )

.= t.is an m-ary linear coterm of type 7.

are m-ary linear coterms of type

(i) If fis an n-ary linear coterm of type t,
t,...t are m-ary linear coterms of type 7
and E(tj)mE(tk)=® for jk€{l,...,n}, then
S '(fit,..t) := flt,...t ] is an n-ary linear
coterm of type 7.

(iii) If fis an n-ary co-operation symbol,
S,,...,S are n-ary linear coterms of type 7
where E(sj)mE(sk)=® for jke{l,...n} and
t,...t, are m-ary linear coterms of type 7
where E(tj)mE(tk)=® for jke{l,...n}, then
S (L5, Lt it ):= fIS, (5t sl ),
S "(s,.t,,...t )] is an n-ary linear coterm of

type 1.
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Together with these operations we obtain a
heterogeneous algebra cT/":=((cT"") , (.S_‘m”)mvnz],
(€)os jont)-

Definition 1.3 A linear cohypersubstitution of
type ¢ is a mapping S : { f }>cT'" from the set of all
co-operation symbols to the set of all linear coterms which

is inductively defined by the following steps:
(i) 6[6/."]:: ej"for everyn=]and O< j<n-1,
i) &1fl:= olf],
(iii) &[f1t,,...t 1]:= S " (c(f).6[t,]....5[t,]) and
assume that 6/ 1] is already defined and E{( l )

are distinct forall / < j< n.

Let Cohyp'"(t) be the set of all linear
cohypersubstitutions of type 7. Since the extension of a
linear cohypersubstitution of type 7 maps ¢T " to ¢T ',
we may define a binary operation o, by 6, 0_,06,:=6,0

o, where o is the usual composition of mappings. Let ¢,

be the linear cohypersubstitution defined by o, (f): = f.

In 2016, D. Boonchari and K. Saengsura studied
the monoid of cohypersubstitutions of type 7=(n)".
In this paper, we characterize Green’s relations on
Cohyp'™(n).

Main results

In this section, we obtain the linear
cohypersubstitutions o, and o which are R-related,
L-related, H-related, D-related and J-related as following

theorem:

We characterize the Green’s relation R on
Cohyp'"(n) and we recall the definition of Green'’s relation
Ri.e., let a, b be elements of semigroup S. Then a R b if

and only if there exists x,y in S such that xa=b, yb=a.

Theorem 2.1 Let G, cSeCohyp“"(n). Ift=e/,

s = ej”ecT[“”'(”) for all i,je{0,....n-1} then 6 Rc_.

Proof Assume that t = ¢/, s = ej”eCT,””’(”)
for all i,je{0,...n-1}. We will show that there are o,
c,€Cohyp™(n) such that 6 =6 0,6 and 6 =0, 0,

(e

w'

Since o (f) =5 = e/ and 6[[ej"]=€j", then o (f) =

=6/e/]

=6[o,.(N]

J Sci Technol MSU

=6/o(f)]

=(c,0,,5)).

Therefore, 6,=6,0,, G.

Similarly, one can show that 6, = o o_, ¢ for

some G €Cohyp"(n).
This implies that 6, R ¢ .

Theorem 2.2 Let 6,6 € Cohyp(n). If t = f] e
s € JecT!™™ and s = fle', ... e", JecT ™™ where

iy e, €00, }then o Ro.
Proof Let r = f[r,...r JecT'™ such that
for all jke{O,...,n-]} and k= 0,....n-1.
Then o, (f) :f[e”j yeer € J,and so (5 o, , ¢ )(f)
= 16,0)] -

=6 [f[r,..r,]]

=o(f)r,..r,]

= (f[e”j”,..., enf',,,, Ir,.r ]

=f[e"j0 [reor Ioeess enf,,,, [r),.r 1]

=f[e”l.0,..., e" |

n-l

r.=e"
J i

k 3

=t

=0, (f).

Therefore,c 0, 6 =0.
s coh Tr t

Similarly, one can show that 6 =6 o, o for
s t “coh Tw

some 6 &€ Cohyp"(n).
Hence, o, R o
Therefore, (Gn GS)ER'

For linear cohypersubstitutions ¢ , c_such that
t and s are different form i.e., te{ei” l0<i< n-1} and
secT'™"™\{e" |0<i<n-I}, we have that (5, c.)¢R as

the following example:

Example 2.3 Let 5, 6, € Cohyp(n)and t = e",,
S =f[e"j e JecT!™™ for all i, J ,..., J ,€{0,.., n-1}
and E(s) be distinct.

Assume that (6,6 )ER.

Then there is 6, € Cohyp™(n). such that 6 = o,
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=o(f)

=6[c, (/)]

=6[w].

But we cannot find w € cT/"" such that
6,[w] =f[e”jl ,...,e"j”].

So (6, 6,)eR.

Remark The number of pairs (o, 6 ) in which
6,Ro_is n* + (n!).

Next, we characterize the Green’s relation L on
Cohyp'™™(n) and we recall the definition of Green’s

relation Li.e., a L b if and only if there exists u, v in S such

that au = v, bv = u.

Theorem 2.4 Let 6,6 € Cohyp™(n) and t, s {e/" |

n>1,0<i<n-1}.Ifc, Lo, thent=s.
Proof Assume that 6, L G .
Then there are o, 6, € Cohyp'(n) such that

C.

c=0c0 candc =0 o
t u coh s s v coh Tt

Leto(f)=t= e/ and o(f)=s= el
Then
e'=t

= Gt(f)
=6 [o,(f)]

Therefore, t = s.

For linear cohypersubstitutions c,0, such that
t,seie] | O<i<n-1}.and t#s, we have that (5, 5 )eL.
as the following example:

Example 2.5 Let 6, 6 e Cohyp'(n)

Assume that t=e/, szej”ecTt“"'("’ for all
ije{0,...n-1} and i #j.

Then e =t = o (f) and el =5 = o (f)-

Since for all o eCohyp'(n), we have that
6”[ej"]=ej". Then & [o (f)] = o (f)= o,(f).

Therefore, (Gr’ GS)EL-
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Theorem 2.6 If ¢ = fle", ..., e", JecT'"™" and
— n n lin,(n) : ; " ; ; :
s = fle PR e/,”/]ecTt where i ,...i , j,...j €

{0,...,n-1}, then c Lo,

Proof Let v = f[v,,...v JecT /™™ such that
V...V €le li= 0,....,n-1} and vl[e”l.”,...,e”iw = e"jl),...,en[e”i

et [ =e .
e t,.,,] A

0 -1

Then

6 [c(f)]=6, [f[e"l.“,...,e”l. ,,]]

= Gv(f) [ e"i” Ve "eni,,,, ]

= (f[v],...,vn])[e"i[ yeenr€”, _/]

:f[vl[e"ia,...,e"l.w] = e”jo,...,vn[e”l.”,...,e"l.nrl]]

=fle" ,...e" |

Jy ot

=5

=0 (f).

Therefore, c 0 . ¢ =0c.
v coh Tt K

Similarly, one can show that 6, = ¢ 0, ,6 ©

coh s

for some o, eCohyp"(n).

Hence, o, L o

Remark The number of pairs (5, 6 ) in which
G, Lo isn+(n!)°.

Next, we characterize the Green’s relation H on
Cohyp'™(n).

Theorem 2.7 Let 6, 6 e Cohyp'(n)and t, s€ {e/" |

nz1,0<i<n-1}. Then o Ho_ifand only if # = s.
Proof Assume that 6, H ..
Thenc Ho and 6,RG..
By Theorem 2.4, we get that ¢ = s.
Similarly, assume that ¢ = s.
Thenoc =o.
Since and are equivalence relations,
we have o, L6 and ¢, R o
Therefore, 6, H G .

Theorem 2.8 Let 7, secT ™"\ {e/" ln>1,0<i<
n-1}. Then o Ho..

Proof Lett=f[e" ,..,e" ]JecT'" ands =f[e"j

e enf,,,, JecT!™ ™ fori,...i ,j ,..j, €{0,...n-1}
By Theorem 2.2, we have that ¢ R o

By Theorem 2.6, we have that G/L G.
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Therefore, o H o

Remark The number of pairs (c, 6) in which

o Ho isn+(n!).

Next, we characterize the Green'’s relation D on
Cohyp'™(n).

Theorem 2.9 Let (5, )€ Cohyp"(n) and

t,sele ln>1,0<i<n-I}. Then cDo.
Proof Since ¢ L ¢, and by Theorem 2.2,
we have that 6 R ..
Thenc Do,

Theorem 2.10 Let 1, secT/™"\ {e¢/' |n>1,0<i
<n-1}.Thenc Do,

Proof Lett=f[e" ...,

n lin(n) — n
e,.J]ECT”t ands_f[ej ,
n lin,(n) ; ; o H
e j#]ecT’ for zg,...,zM,Jﬂ,...JMe{O,...,

n-1}.
By Theorem 2.2, we have that G,R o
By Theorem 2.6, we get that o L G.
Therefore, 6, D G .

For linear cohypersubstitutions G, 0, such that
t and s are different form i.e., te{ei” | 0=<i<n-1} and
secT!™"\{e" |0 <i=<n-1}, we have that (0,,0)eD as

the following example:

Example 2.1 Let 6,6 eCohyp™(n)and t = e,
s = f[e ]ecT“"("’for alli,j,...j,_,€{0,...n-1} and
E(s) be dlstlnct

Then o (f) = e/ and c_(f) =f[e"jn,...,e”_,.”_l].

By Theorem 2.4, we get that 6, L G .

But by Theorem 2.3, we have that (5, c )R.

Hence, (o, 6 )¢D.

Remark The number of pairs (6, 6 ) in which
c,Dc isn’+(n!).

Next, we characterize the Green'’s relation J on
Cohyp'™(n).

Theorem 2.12 Let (5, o )eCohyp"(n) and

t,sele ln>1,0=<i<n-1}. Then c,Jo.

Proof Lett=¢/, s = e/ and uecT/™™",
Since & [¢,"]= ¢," for all k=0,..n-1
we have

o(f)=e’

J Sci Technol MSU

=6[6[e/]]
=6[6[c,. (Nl
6,16,[c,(M1].

Therefore, 6, = 06,0, G0, 6 0C.

s coh

Similarly, one can show that 6,=6,0,0,0,0,

coh "t~ coh

for some 6,6 € Cohyp'™(n).

Hence, ¢, J o..

Theorem 2.13 Let 7, secT™"\ {e"|n>1,0<i
<n-1}.Thenc Jo,.

Proof Let 7 = f[e ]ecT”"(’”ands f[e”.

e ean]‘ECT;W") fori,..i ,.j., ]n ,€{0,....n-1}.

We let r = f[r ,...r ] such that ro=e where
J,€{0,...n-1}and k = 0,...,n-1.

By Theorem 2.2, we get that ¢ (f)] = 6 [ (f)].

Let v=(f)[e" ,....e" ,JecT™".
Then

&,[0(0)]=8,[fl¢", e, ]
=o' e, ]

= vy, Dle, .. "”4]

:f[vl[e"i”,...,e”l ] = W n[e”i”,...,e”iw/]]
=f[ e”_].” s ""e”j,,., ]

=t

=o(f).

Therefore, ¢ 0.,,6,0,0 =0,

s coh

Similarly, one can show that 6. =6 o0, © 0

t ~coh

o, for some o, cyeCOhyp”'”(n).

Hence, ¢, J o

Remark The number of pairs (G, 6 ) in which
c,Jo isn’ + (n!).

We conclude the R, L, H, D and J as the
following diagram:

U={(c, o) |4, secT™™}.
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Ifz,s€{e/" |n21,05i5n-]} andt=sin L, then
LCR.
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