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บทคัดยอ
การกระเจิงโดยศักยยูกาวา ถูกยกเปนกรณีการศึกษา ผานการใชเทคนิคการคํานวณโดยหลักการเชิงพลวัตควอนตัมที่เสนอ

โดยชวิงเงอร ซึ่งเปนวิธีการท่ีข้ึนกับฟงกชันกําเนิดที่ถูกแทนที่ดวยตัวกระทําการแบบฟงกชันเชิงอนุพันธ จากผลลัพธเราได

ลกัษณะอซมิโทตกิของกรนีฟงกชนัอสิระ ท่ีสามารถอธบิายลกัษณะของการกระเจิงของอนภุาคตอศกัยยกูาวา และทาํการแปรคา

พารามิเตอรของมวลใหมีคาตางๆ กัน นอกจากนี้ผลลัพธที่ไดนี้ยังนําไปสูคาแอมพลิจูดของการกระเจิงและคาภาคตัดขวางของ

การกระเจิงเชิงอนุพันธอันเนื่องมาจากศักยยูกาวาอีกดวย

คําสําคัญ: หลักการควอนตัมเชิงพลวัต การกระเจิงโดยศักยยูกาวา ศักยระยะสั้น กรีนฟงกชัน

Abstract
Yukawa scattering is pedagogically interpreted, by the Schwinger’s quantum dynamical principle involving the 

generating function, which is replaced by a functional differential operation. As for the results, we get the asymptotically

free Green function that explains the behavior of the Yukawa potential when the mass parameter is increasing and it 

can also lead to scattering amplitude and differential cross section respectively.

Keywords: quantum dynamical principle, Yukawa scattering, short range potentials, Green functions.

Introduction
In quantum scattering, we are interested in an interaction 

between the incident particles and the potential of the 

target e.g., coulomb potential1 ( ) 1/V x x=  which 

describes the behavior of particle scattering. Yukawa2 

presented his study by considering the meson interaction, 

particle with mass, which eventually was called the 

Yukawa potential,. Experimentally, researchers studied 

the scattering amplitude to determine these scattered 

particles. R. Feynman presented a diagram of particle 

scattering with the path integral that uses the time-slicing 

derivation3,4.

 Accordingly, in this report, we use the quantum 

dynamical principle proposed by J. Schwinger5-9 to 

describe this situation. This method is very useful because 

it gives us the interested transformation function, also 

called the propagator. In particular, the Hamiltonian 

equation of this system involves external sources which 

generate degrees of freedom10,11,12. The equation is 

precisely derived from the variation of the transformation 
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function that depends on the potential, and then it is  

replaced by the differential functional. Consequently, it 

leads to the scattering amplitude.

	 The main purpose of this paper is to find the 

scattering amplitude and differential cross section by 

evaluating the asymptotically free Green function through 

the Yukawa potential. Previously, this method was also 

used to explain Coulomb scattering13,14 near an energy 

shell. Clearly, this paper also shows the process, by  

setting tools, for interpreting the scattering problem in 

quantum theory by using the Yukawa potential which is 

involved with the mass term. 

 

Quantum dynamical principle for scattering case

	 We start with a typical Hamiltonian written as 
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H ( )
2

V
m

 p x ,  (1) 

where p is the momentum of  a particle with mass m
and incident on a potential  ( )V x . Furthermore, we 

present a new Hamiltonian ( , ) H  follows 

2

( , ) ( ) ( ) ( )
2

V
m

         x x F p SpH , (2) 

The latter involves the external sources ( )F and 

( )S  at time   . These sources are linear function of 

x and p . The sources generate ( )x and ( )p , for 
position and momentum at time   respectively. The 
parameter is an arbitrary parameter.  The arbitrary 
parameter is another physical quantity involved with 
the system that we don’t need to specify. It will be 
eventually set equal to one (because of the boundary 
condition of the transformation function).  

Next we introduce Schwinger's quantum 
dynamical principle in the variation of transformation 
function from p  at time 't  (initial state) to x  at time t  
(final state), written as 

| | ( ( ), ( ), ; )d |
t

t
t it t t      


      x p x x p pH . (3) 

This leads to 

| | ,
( )

d
t

t
t t Vi i t t  

 

           
  

x p x p
F

 (4) 

by inserting the Hamiltonian from Eq. (2) into Eq. (3). 
So, this variation satisfies this Hamiltonian and 
depends on the parameter  . In addition, for ( )V x , 

x is replaced by / ( )i    F , which was  denoted 
earlier.  

Immediately, integrating Eq. (4) over   from 

0   to 1, we obtain 

0
0, 0| exp |

( )
d |t

t
t iit V t t

   

           
  

 F Sx p x p
F

, 

 (5) 

where |t t x p  satisfied the Hamiltonian in Eq. (1) 
and setting the parameter 1  . The transformation 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 

ln(2 )
0

0( ) .
[ ( ) ]

i i pe eG
p E i

 

 
 

p
p ๒

  (22) 

The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where   is Euler-Mascheroni constant and 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 

 

 

	 (17)

Clearly, Eq. (16) can be rewritten as

4 
 

 

 

where 2( ') ' / 2E mp p . 

The function ( , '; )K x p is denoted as 

( , '; ) exp [ ]
2 ( ) ( )

t t

t t
dK t

m
di     

    

 
 
 

 
 x p

F F
   

0
'exp ) (d ( ) |t

t
Vi t

m
   


          F

px F . (14) 

For , we consider the 0( , '; )G p p p  

near the energy shell 0 2' / 2p mp . So, we introduce 
the new integration variable as 

0[ ( ')]u p E  p .   (15) 

Thus Eq. (13) becomes 

0 0 (1 )
3 0

( , '; )[ ( ')
)

d]
(2

iu iiG p p E ue


 
    p p p ๒

3 ( ')/
0, ';d

( ')
i ue K

p E
    

    x p px x p
p

. (16) 

Considering only 0( , '; / ( '))K u p Ex p p  where 
we set ( ) 0 F , and obtain 

0, ';
( ')

uK
p E

 
  
x p

p  
0/( ( '))

0
d 'exp

u p E
Vi

m
 

       
p px  (17) 

Clearly, Eq. (16) can be rewritten as 

0 0( , '; )[ ( ')]G p p E p p p
(1 ) 3 ( ')/

3 0
d

)
d

(2
iu i iue ei


        x p px๒  

0/( ( '))

0
d 'exp

u p E
Vi

m
 

        
p px .  (18) 

Next, we consider the Yukawa potential, 
| |( ) / | |kMV e  xx x  where M  is mass of a particle 

that mediating force. For this potential, we consider 
only the last exponential term of Eq. (18) by using 
approximation and incomplete Gamma function. We 
obtain 

0/( ( '))

0

'exp d
u p E

Vi
m

 
       

p px

2exp ln
| ' | | | (1 cos )

i kmM 


   
        p x

 (19) 

where   is Euler-Mascheroni constant and 

cos ' / | ' || |  p x p x . Eq. (19) is independent of u  
variable. Therefore, we can easily integrate over u  in 
Eq. (18) and get 

 (1 )
0

1
i )

d
(1

u iiue
i

  
 ๒

๒
.  (20) 

Finally, from Eq. (18), when 0๒ , we 
obtain  

3 / 0( )d , ';ie G p
 p xp p p

'/
ln(2 ) ln( ' )

0 .
[ ( ') ]

i
i p i i p xe e e e

p E i
  


   

 

x p
p x

p ๒
     (21) 

where /kmM p   . This is the asymptotically 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where   is Euler-Mascheroni constant and 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where   is Euler-Mascheroni constant and 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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where /kmM p   . This is the asymptotically 
free Green function for Yukawa scattering. In terms 
of energy-momentum representation, it is expressed as 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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The meaning of “free” word is the x -independent. 
Therefore, we can plot this propagator for 

0.510M  ,1  and 1.5 MeV, as shown in Fig.1. 
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Fig.1 The Asymptotically free Green function of the Yukawa scattering of various masses 

The scattering amplitude ( , ')f p p  for scattering 
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where p and 'p are the initial and final momenta 
respectively. Next, we substitute the final result from 
Eq.(21) and obtain the scattering amplitude as 
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 After we take the squared absolute and then 
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scattering. It is given as 
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The result given in Eq. (25) is consistent with 
the Born approximation. By using Eq. (25), it can be 

shown by the graph in Fig.2, for 0.510M  ,1 and 
1.5 MeV, respectively. 

Discussion and Conclusion 

The transformation function in Eq. (10) provided the 
trajectory which involved  potential V . This potential 

is the function of ( ) /t m x p  only, by setting 
0F . So, this function leads to the propagator of 

scattered particle.The following result is the 
asymptotically free Green function for Yukawa 
scattering. It is directly obtained from considering this 
potential when a particle is near the energy shell. In 
Fig.1, the propagators still conserve their wave 

properties for the mass M  of its own potential for 
1and1.5M MeV respectively. Particularly, this 

means that the Yukawa potential decreased the 
influence of the incoming particle. It certainly 
confirms the existence of the short range potential. 
Finally, the differential cross section in Eq. (25) is 
obtained and consistent with the result calculated by 
the Born approximation method. Figure 2  shows  the 
graph of the differential cross section for various 
masses as a comparative study by the present method. 
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0F . So, this function leads to the propagator of 

scattered particle.The following result is the 
asymptotically free Green function for Yukawa 
scattering. It is directly obtained from considering this 
potential when a particle is near the energy shell. In 
Fig.1, the propagators still conserve their wave 

properties for the mass M  of its own potential for 
1and1.5M MeV respectively. Particularly, this 

means that the Yukawa potential decreased the 
influence of the incoming particle. It certainly 
confirms the existence of the short range potential. 
Finally, the differential cross section in Eq. (25) is 
obtained and consistent with the result calculated by 
the Born approximation method. Figure 2  shows  the 
graph of the differential cross section for various 
masses as a comparative study by the present method. 
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Figure 2 The differential cross section of Yukawa scattering with various masses.
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