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Yukawa scattering treated by the Quantum dynamical principle
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Abstract

Yukawa scattering is pedagogically interpreted, by the Schwinger's quantum dynamical principle involving the
generating function, which is replaced by a functional differential operation. As for the results, we get the asymptotically
free Green function that explains the behavior of the Yukawa potential when the mass parameter is increasing and it

can also lead to scattering amplitude and differential cross section respectively.
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Introduction

In quantum scattering, we are interested in an interaction
between the incident particles and the potential of the
target e.g., coulomb potential’ V(x)=1/x which
describes the behavior of particle scattering. Yukawa®
presented his study by considering the meson interaction,
particle with mass, which eventually was called the
Yukawa potential,. Experimentally, researchers studied
the scattering amplitude to determine these scattered

particles. R. Feynman presented a diagram of particle

scattering with the path integral that uses the time-slicing
derivation®*.

Accordingly, in this report, we use the quantum
dynamical principle proposed by J. Schwinger® to
describe this situation. This method is very useful because
it gives us the interested transformation function, also
called the propagator. In particular, the Hamiltonian
equation of this system involves external sources which

10,11,12

generate degrees of freedom . The equation is

precisely derived from the variation of the transformation
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function that depends on the potential, and then it is
replaced by the differential functional. Consequently, it
leads to the scattering amplitude.

The main purpose of this paper is to find the
scattering amplitude and differential cross section by
evaluating the asymptotically free Green function through
the Yukawa potential. Previously, this method was also

' near an energy

used to explain Coulomb scattering
shell. Clearly, this paper also shows the process, by
setting tools, for interpreting the scattering problem in
quantum theory by using the Yukawa potential which is

involved with the mass term.

Quantum dynamical principle for scattering case

We start with a typical Hamiltonian written as

2

P
H=""1V(x),
) (x) (1)

where P is the momentum of a particle with mass m
and incident on a potential J'(X). Furthermore, we pre-

sent a new Hamiltonian g (/1, z‘) as follows

2

H (ﬂ,r):§—m+/IV(X)—X-F(r)+p-S(T)a )

The latter involves the external sources F(7) and S(7)
at time 7. These sources are linear function of X and
P . The sources generate X(T) and p(z-), for position
and momentum at time 7 respectively. The parameter
A is an arbitrary parameter. The arbitrary parameter is
another physical quantity involved with the system that
we don’t need to specify. It will be eventually set equal
to one (because of the boundary condition of the
transformation function).

Next we introduce Schwinger’'s quantum
dynamical principle in the variation of transformation
function from p at time t' (initial state) to X at time f

(final state), written as

5t pr) ==+ [ dexr | 8 (x(@.pD 5D p) O
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This leads to

5(xt|pt'>=—% [ ’,dn{/w(—m Wir)j}mpw, @)

by inserting the Hamiltonian from Eq. (2) into Eq. (3). So,
this variation satisfies this Hamiltonian and depends on
the parameter . In addition, for V' (X), Xis replaced
by —ifi0 / OF(7), which was denoted earlier.

Immediately, integrating Eq. (4) over 4 from

A=0 to 1, we obtain

(x| pt) =exp{—;jjdﬂ/(—ih ﬂm P fsar O

OF(7)

where (Xt | pt’) satisfied the Hamiltonian in Eq. (1) and
setting the parameter 4 = 1. The transformation function
(Xt|pt'>0 is governed by the free Hamiltonian. The

source terms, F(T) and S(T) are finally set equal to
zero to satisfy the Hamiltonian in Eq. (1). Zero-superscript
denotes the free particle where it's Hamiltonian is given
by

2

H (O,T):g—m—x-F(r)+p-S(T). ©)

By applying the quantum dynamical principle to Eq.(6)
and replacing P by i7i0 / OS(7), we obtain

(xt|pt')’ = exp{— 2’;7] [ dr[ih 5Si T)j }xt pty, (D

The transformation function (Xt |pt'), satisfies the
Hamiltonian equation, i.e. without the kinetic term, which

is defined as

H(r)=—x-F(z)+p-S(7). (8)

By the way, the Heisenberg equation of the special

Hamiltonian in Eq. (8) is integrated. Finally, we obtain
i t
(xt|pt"), =exp [E X- (p +.L' drF(T)ﬂ

Xexp [—%p . J.; dTS(T):|
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xexp[—%j; erf dz”S(z’)@(r—r’)F(r’)} 9)

where the Heaviside step function, @(T), is used as the

time controller. In particular, from Eqg. (9), when we set

S(T) and F(T) equal to zero and substitute into Eq. (7)

thus Eq. (5) is directly rewritten as

(xt|pt) = eXp{h(x p——(t t)ﬂ

xexp{ I dr_[ de't—7.]

o
5F(Z') 5F(T)
Xexp |:—%J.: dTV(X - (t T) +F(T)):| |F:0,S:O > (10)

where T, is maximum of 7 and 7’ . We replace, for the

potential function, —if10 / OF(7) by X—p(t—t)/m
to get Eq. (10). Finally, we get the translational invariant
in time when setting F(7) =0.. (x¢|pt') is a transfor-

mation function of t —t" .

The differential cross section from the asymp-
totically free Green function

Next, we determine the differential cross section
by using the asymptotically free Green function which is
a function at infinite time.

We recall the definition of Green function that

(xt|pt’)y =G, (xt,pt)

= | &XG, (xt,x'T) (11)

for G, (xt,x't") is denoted as (Xt|X't’).

We use the Fourier transform to rewrite Eq. (11)

as

1
C.(p.p h (27hy’
x| d*xe ™" (xar | p'0) (12)
where (xa|p’0> is given in Eq. (10) with  —t' =«
and 1v—>+0.
Next, insert Eq. (10) into Eq. (12), we obtain

i( PP +iw)a/h

W)=
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& PP—E(p)+iw)alh

1
G (p pop )__£(27Z'h)3".

de3xe—ix-(p—P')/hK(x’pv; (Z), (13)

where E(p")=p"/2m.
The function K(x’p';a) is denoted as

K(x,p';a)zexp{ Idrj. dr'[t—r1.] o 0 }

SF(7) 5F(z")
xexp{—%'r,dﬂ/(x—g' (t-7) +F(7)ﬂ |F:0 - (14)
‘ m

For & —>0, we consider the G+(p’p';p0) near the

energy shell p° =p"™/2m . So, we introduce the new

integration variable as

a )
u=—1p"~E@] "o

Thus Eq. (13) becomes

G , v; 0 O_E Nl —_ i1 (1+iw)
L(p.ps P )P —E(p)] o h)
h

Considering only K(X,p'; uh/po —E(p ')) where we
set F(T) =0 and obtain

uh
K x,p';—'j
( p'—E@p"
I (un/(p"-E(p)) p'
= exp{—zjo daV(x—Eaﬂ (17)

Clearly, Eq. (16) can be rewritten as

G, (p.p;p°)p° —E@"]

m(l+ng,)J‘d3 —ix-(p—p')/ 1

l
~ 2nny 3N

i [un/(p"~E@) p'
Xexp|:_EJ.0 daV(x—;aﬂ (18)
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Next, we consider the Yukawa potential,

V(x)=Ae ™M/ | x| where M is mass of a particle
that mediating force. For this potential, we consider only
the last exponential term of Eq. (18) by using approxima-

tion and incomplete Gamma function. We obtain

[ (un/(p"=E@p) p'
exp{—%jo daV(x—Eaﬂ

[ e 2 )
"@®{ D] @n@x|a—cou%j 7j} 1)

where ) is Euler-Mascheroni constant and

O=p"x/|p'llx|. Eaq. (19) is independent of u
variable. Therefore, we can easily integrate over U in

Eq. (18) and get

J Sci Technol MSU

-1

J.w dueiu(lJrilm) —
0 1(1+7w)

(20)

Finally, from Eq. (18), when lo—> +0, we obtain
3. ipx/h .0
[d'pe™ "G, (p.p' p")

eix-p'/ h

T [P - E(p)+is]

e—iﬁ In(2p") eiﬁ}/ eiﬁ In(px—p"x) )

(21)

where ﬂ = ﬂ,k;nM/p'. This is the asymptotically free
Green function for Yukawa scattering. In terms of energy-

momentum representation, it is expressed as

eiﬂ;/ e—iﬂ In(2p)
[p" —E(p)+ie]

The meaning of “free” word is the X -independent. There-

G(p)=

(22)

fore, we can plot this propagator for M =0.510 ,1 and
1.5 MeV, as shown in Figure 1.
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Figure 1 The Asymptotically free Green function of the Yukawa scattering of various masses

The scattering amplitude f(p,p') for scattering particle ~ Where P andp' are the initial and final momenta respec-

is given by tively. Next, we substitute the final result from Eq.(21) and
obtain the scattering amplitude as
m 3.0m '
fp.p)=- [dp Vip—p)
’ 2k’ m 47

f(p’p):_zﬂ_hz (p_pq)2+(kM)2

><C;’+ (p "7p‘; po)[po _E(p ‘)] pozE(p') s (23) 5 '
x(p'(p—p")-p-(p-p")" €7e . (2a)
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After we take the squared absolute and then we
get the differential cross section for Yukawa scattering. It

is given as

212
D(6)= dmA )
1* (4p” sin®(0/2)+(kM)’)

The result given in Eq. (25) is consistent with the Born
approximation. By using Eq. (25), it can be shown by the
graph in Figure 2, for M =0.510 ,1 and 1.5 MeV,

respectively.

Discussion and Conclusion
The transformation function in Eq. (10) provided
the trajectory which involved potential 7" . This potential

is the function of X —p(# — ) / m only, by setting F =0
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. So, this function leads to the propagator of scattered
particle.The following result is the asymptotically free
Green function for Yukawa scattering. It is directly
obtained from considering this potential when a particle
is near the energy shell. In Figure 1, the propagators still

conserve their wave properties for the mass M of its

own potential for M =1and 1.5 MeV respectively.
Particularly, this means that the Yukawa potential
decreased the influence of the incoming particle. It
certainly confirms the existence of the short range
potential. Finally, the differential cross section in Eq. (25)
is obtained and consistent with the result calculated by
the Born approximation method. Figure 2 shows the graph
of the differential cross section for various masses as a

comparative study by the present method.

2
L5+
~
D 1t
=
A
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Figure 2 The differential cross section of Yukawa scattering with various masses.
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