เซต ${oldsymbol{\mathcal{A}}}$ ในปริภูมิสองโครงสร้างเล็กสุด ${oldsymbol{\mathcal{A}}}$ -Sets in Biminimal Structure Spaces

ชนิกา กุลค้อ¹, จีระนันท์ คำภักดี ^{2*}, ดรุณี บุญชารี ³ Chanika Kulkhor¹, Jeeranunt Khampakdee^{2*}, Daruni Boonchari ³ Received: 20 December 2017; Accepted: 9 February 2018

บทคัดย่อ

งานวิจัยนี้จะนำเสนอแนวคิดเกี่ยวกับเซต A ในปริภูมิสองโครงสร้างเล็กสุดและตรวจสอบคุณสมบัติบางประการของเซต A รวมทั้งฟังก์ชันต่อเนื่อง A ในปริภูมิสองโครงสร้างเล็กสุด

คำสำคัญ : เซต A, ฟังก์ชันต่อเนื่อง A

Abstract

In this article, we introduce the concepts of A-sets in biminimal structure spaces and investigate some of their properties. Moreover, the notions of A-sets and A-continuous functions in biminimal structure spaces were studied.

Keywords : A-set, A-continuous function.

Introduction

In 1972, J. Dugundji⁷ introduced the concepts of regular closed sets in topological spaces. Let (X, T) be a topological space and $A \subseteq X$, then A is called regular closed if and only if A=Cl(Int(A)). In 1986, J.Tong²¹ introduced the concepts and properties of A-sets in topological spaces. Let A be a subset of a topological space (X, τ) then A is an A-set in (X, τ) if $A=U^{\cap}B$ when U is open and B is regular closed in (X, τ) . In addition, J.Tong²¹ introduced the concepts of *A*-continuous functions from a topological space (X, τ) to a topological space (Y, U). Let f be a function from X to Y, then f is \mathcal{A} -continuous function if and only if the inverse image of each open set in Y is an \mathcal{A} -set in X. In 1990, M. Ganster, and Reilly, I. L.¹⁰ improved J. Tong's decomposition result and provided a decomposition of *A*-continuous. In 2000, the concepts of minimal structure spaces were introduced by V. Popa and T. Noiri¹⁸. A pair (X, m_{y}) is a minimal structure space if and only if $X \neq \emptyset$ and m_{χ} is family of

P(X) with Ø, $X \in m_x$. Moreover, they also introduced the concepts of m_x -open sets and m_x -closed sets in minimal structure spaces. In 1963, J. C. Kelly⁹ introduced the concepts of bitopological spaces which consist of a nonempty set and two topological spaces. In 2010, C. Boonpok² introduced the concepts of biminimal structure spaces which consist of a nonempty set and two minimal structures. Furthermore, C. Boonpok² defined $m_x^{-1}m_x^{-2}$ -closed sets in biminimal structure spaces and the complement of $m_x^{-1}m_x^{-2}$ -closed sets is call $m_x^{-1}m_x^{-2}$ -open sets. In 2010, C. Boonpok [4] defined $(i, j) m_x^{-1}$ -regular open sets are complement of $(i, j) m_x^{-1}$ -regular closed sets as complement of $(i, j) m_x^{-1}$ -regular open sets for i, j = 1, 2 and $i \neq j$.

In this article we introduce the concepts of \mathcal{A} -sets in biminimal structure spaces and \mathcal{A} -continuous functions in biminimal structure spaces. Also, we study some properties of \mathcal{A} -sets and \mathcal{A} -continuous functions in biminimal structure spaces.

¹ นิสิตระดับปริญญาโท, ^{2*, 3}ผู้ช่วยศาสตราจารย์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม

¹ Student faculty of Science, Mahasarakham University, MahaSarakham, Thailand, 44150.

^{2*, 3}Assistant professor, Department of Mathematics, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.

^{*} Corresponding Author : jeeranunt.k@msu.ac.thdu

Preliminaries

In this section, we will give some definitions and notations, deal with some preliminaries and some useful results that will be duplicated in later sections.

Definition 2.1¹⁰ Let (X, τ) be a topological space and $M \subseteq X$. Then M is called an \mathcal{A} -set if $M = U \cap B$ when U is open and B is regular closed in X.

The family of all \mathcal{A} -sets in a topological space (X, τ) is denoted by $\mathcal{A}(X, \tau)$.

Definition 2.2¹⁷ Let *X* be a nonempty set and *P*(*X*) be the power set of *X*. A subfamily m_x of *P*(*X*) is called a minimal structure (briefly an *m*-structure) on *X* if $\emptyset \in m_x$ and $X \in m_x$.

The pair (*X*, m_{χ}), we denote a nonempty set *X* with an *m*-structure m_{χ} on *X* and it is called a minimal structure space (briefly an *m*-space). Each member of m_{χ} is said to be m_{χ} -open and the complement of an m_{χ} -open set is said to be m_{χ} -closed.

Definition 2.3¹⁷ Let *X* be a nonempty set and m_x an *m*-structure on *X*. For a subset *A* of *X* the m_x -interior of *A* and the m_x -closure of *A* with respect to m_x are defined as follows:

$$\begin{split} m_x & \text{Int}(A) = \bigcup \{ U: U \subseteq A, U \in m_x \}, \\ m_x & \text{Cl}(A) = \bigcap \{ F: A \subseteq F, X \setminus F \in m_x \}. \end{split}$$

Lemma 2.4¹⁴ Let X be a nonempty set and m_{χ} an *m*-structure on X. For any subsets A and B of X, the following properties hold:

- (1) $m_{\chi}Cl(X \setminus A) = X \setminus m_{\chi}Int(A)$ and $m_{\chi}Int(X \setminus A) = X \setminus m_{\chi}Cl(A)$,
- (2) If $(X \setminus A) \in m_{\chi}$, then $m_{\chi}Cl(A) = A$ and if $A \in m_{\chi}$, then $m_{\chi}Int(A) = A$,
- (3) $m_x Cl(\emptyset) = \emptyset$, $m_x Cl(X) = X$, $m_x Int(\emptyset) = \emptyset$ and $m_x Int(X) = X$,
- (4) If $A \subseteq B$, then $m_{\chi}Cl(A) \subseteq m_{\chi}Cl(B)$ and $m_{\chi}Int(A) \subseteq m_{\chi}Int(B)$,
- (5) $A \subseteq m_{x}Cl(A)$ and $m_{x}Int(A) \subseteq A$,
- (6) $m_{\chi}Cl(m_{\chi}Cl(A)) = m_{\chi}Cl(A)$ and $m_{\chi}Int(m_{\chi}Int(A)) = m_{\chi}Int(A)$,
- (7) $m_x Int(A \cap B) = m_x Int(A) \cap m_x Int(B)$ and $m_x Int(A) \cup m_x Int(B) \subseteq m_x Int(A \cup B)$,
- (8) $m_{\chi}Cl(A \cup B) = m_{\chi}Cl(A) \cup m_{\chi}Cl(B)$ and $m_{\chi}Cl(A \cap B) \subseteq m_{\chi}Cl(A) \cap m_{\chi}Cl(B).$

Definition 2.5¹³ An *m*-structure m_x on a nonempty set *A* is said to have property \mathfrak{B} if the union of any family of subsets belonging to m_x belongs to m_x .

Lemma 2.6¹⁷ Let X be a nonempty set and m_{χ} is an *m*-structure on X satisfying property **B**.

For $A \subseteq X$ the following properties hold:

- (1) $A \in m_x$ if and only if $m_x Int(A) = A$,
- (2) A is m_y -closed if and only if $m_yCl(A) = A$,
- (3) $m_x Int(A)$ is m_x -open and $m_x Cl(A)$ is m_y -closed.

Definition 2.7³ Let (X, m_{χ}) be an *m*-space and $R \subseteq X$. Then *R* is called m_{χ} -regular closed if and only if $R = m_{\chi} Cl(m_{\chi} lnt(R))$.

The family of all m_x -regular closed sets in an m_x -space (X, m_x) is denoted by $RC(X, m_x)$ **Definition 2.8**¹⁹ A subset A of an *m*-space (X, m_x) is called an *m*-preopen set if $A \subseteq m_x Int(m_x Cl(A))$ and an m_x -preclosed set if $m_x Cl(m_x Int(A)) \subseteq A$.

The family of all m_{χ} -preopen sets in an *m*- space (X, m_{χ}) is denoted by $PO(X, m_{\chi})$ and *m* preclosed sets in an *m*-space (X, m_{χ}) is denoted by $PC(X, m_{\chi})$

Definition 2.9¹⁹ Let (X, m_x) be an *m*-space and $A \subseteq X$, the m_x -preclosure of A is denoted by $m_x pcl(A)$ is defined as the intersection of all m_x -preclosed of (X, m_x) containing A.

Proposition 2.10¹⁹ Let (X, m_{χ}) be an *m*-space and *A*, *B* $\subseteq X$. If $A \subseteq B$ then $m_{\chi} pcl(A) \subseteq m_{\chi} pcl(B)$.

Proposition 2.11¹⁹ Let (X, m_{χ}) be an *m*-space and $A \subseteq X$. If m_{χ} satisfies the property \mathfrak{B} . Then $m_{\chi}pcl(A) = A \cup m_{\chi}Cl(m_{\chi}Int(A))$.

Definition 2.12² Let *A* be a nonempty set and $m_x^{-1}m_x^{-2}$ be *m*-structures on *X*. A triple (*X*, m_x^{-1} , m_x^{-2}) is called a biminimal structure space (briefly *bim*-space).

Let (X, m_x^{i}, m_x^{2}) be a biminimal structure space and $A \subseteq X$. The m_x -closure and m_x -interior of A with respect to m_x^{i} are denoted by $m_x Cl(A)$ and $m_x Int(A)$ respectively, for i, j = 1, 2.

Each member of m_x^i is said to be an m_x^i -open set and the complement of an open set is said to be m_x^i -closed, for *i*, *j* = 1, 2.

preclosed).

Definition 2.13⁴ A subset *A* of biminimal structure spaces (X, m_x^{1}, m_x^{2}) is said to be

- (1) (*i*, *j*) m_x -regular open if $A = m_x^i lnt(m_x^j Cl(A))$, where *i*, *j* = 1 or 2 and $i^{\neq}j$,
- (2) (*i*, *j*) m_x -semi-open if $A \subseteq m_x^i Cl(m_x^i Int(A))$ where *i*, *j* = 1 or 2 and $i^{\neq}j$,
- (3) (*i*, *j*) m_x -preopen if $A \subseteq m_x^{i}$ Int $(m_x^{i}Cl(A))$, where *i*, *j* = 1 or 2 and $i^{\neq}j$.

The complement of an $(i, j)m_{\chi}$ -regular open (resp. $((i, j)m_{\chi}$ -semi-open, $(i, j)m_{\chi}$ -preopen) set is called $(i, j)m_{\chi}$ -regular closed (resp, $((i, j)m_{\chi}$ -semi-closed, $(i, j)m_{\chi}$ -

Lemma 2.14⁴ Let $(X, m_{X}^{1}, m_{X}^{2})$ be a biminimal structure space and *A* be a subset of *X*. Then

(1) A is $(i, j)m_x$ -regular closed if and only if $A = m_x^{\ i}Cl(m_x^{\ i}Int(A)),$

(2) A is $(i, j)m_{\chi}$ -semi-closed if and only if $m_{\chi}^{i}Int(m_{\chi}^{j}Cl(A)) \subseteq A$,

(3) A is $(i, j)m_x$ -preclosed if and only if $m_x^i Cl(m_x^j Int(A)) \subseteq A.$

Definition 2.15 [4] Let (X, m_x^{-1}, m_y^{-2}) and

 (Y, m_Y^{-1}, m_Y^{-2}) be biminimal structure space. A function f: $(X, m_X^{-1}, m_X^{-2}) \rightarrow (Y, m_Y^{-1}, m_Y^{-2})$ is said to be (i, j)-*M*-continuous at a point $x \in X$ and each $V \in m_Y^{-i}$ containing f(X), there exists $U \in m_X^{-i}$ containing x such that $f(U) \subseteq V$, where i, j = 1 or 2 and $i \neq j$.

A function $f : (X, m_x^{1}, m_x^{2}) \rightarrow (Y, m_y^{1}, m_y^{2})$ is said to be *(i, j)-M*-continuous if it has this property at each point $x \in X$.

Theorem 2.16⁴ For a function $f : (X, m_X^{-1}, m_X^{-2}) \rightarrow (Y, m_Y^{-1}, m_Y^{-2})$, the following properties are equivalent:

- (1) f is (i, j)-M-continuous;
- (2) $f^{-1}(V) = m_v^{j} lnt(f^{-1}(V))$ for every $V \in m_v^{j}$
- (3) $f(m_x^i Cl(A)) \subseteq m_y^i Cl(f(A))$ for every subset A of X;
- (4) $m_{\chi}^{j}Cl(f^{-1}(B)) \subseteq f^{-1}(m_{\gamma}^{i}Cl(B))$ for every subset *B* of *Y*;
- (5) $f^{-1}(m_{Y}^{i}Int(B)) \subseteq m_{X}^{j}Int(f^{-1}(B))$ for every subset *B* of *Y*;
- (6) $m_{\chi}^{j}Cl(f^{-1}(F)) = f^{-1}(F)$ for every m_{χ}^{j} -closed set *F* of *Y*.

Results and Discussion

A-sets in minimal structure space

In this section, we introduce the concept of *A*-sets in minimal structure spaces.

Definition 3.1.1 Let (X, m_{χ}) be an *m*-space. A subset *M* of *A* is said to be an m_{χ} - \mathcal{A} -set if there exist *G* and *R* such that $M = G \cap R$ when *G* is m_{χ} -open and *R* is m_{χ} -regular closed.

The family of all m_{χ} - \mathcal{A} -set in an *m*-space (*X*, m_{χ}) is denoted by $\mathcal{A}(X, m_{\chi})$.

Example 3.1.2 Let $X = \{1, 2, 3\}$. Define an *m*-structure m_x on X as follows : $m_x = \{\emptyset, \{2\}, \{1, 2\}, \{1, 3\}, X\}$. Then $RC(X, m_x) = \{\emptyset, \{2\}, \{1, 3\}, X\}$ and $\mathcal{A}(X, m_x) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, X\}$.

Definition 3.1.3 Let (X, m_{χ}) be an *m*-space and $A \subseteq X$, then *A* is said to be an m_{χ} -*t*-set if m_{χ} Int(*A*) = m_{χ} Int(m_{χ} Cl(*A*)).

The family of all m_x -t-set in an *m*-space (X, m_x) is denoted by $t(X, m_y)$.

Example 3.1.4 Let $X = \{1, 2, 3\}$ and define $m_{\chi} = \{\emptyset, \{1\}, \{2\}, \{1, 3\}, \{2, 3\}, X\}$ be an *m*-structure on *X*. It follows that $t(X, m_{\chi}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 3\}, \{2, 3\}, X\}$.

Proposition 3.1.5 Let (X, m_{χ}) be an *m*-space and $R \subseteq X$. If *R* is m_{χ} -regular closed then *R* is an m_{χ} -*t*-set.

Proof. Let *R* be an m_x -regular closed. Then $R = m_x Cl(m_x Int(R))$. Consequently, $m_x Cl(R) = m_x Cl(m_x Cl(m_x Int(R)))$. Thus $m_x Int(m_x Cl(R)) = m_x Int(m_x Cl(m_x Int(R)))$. Hence $m_x Int(m_x Cl(R)) = m_x Int(R)$. Therefore, *R* is an m_x -t-set.

A-sets in biminimal structure space

In this section, we introduce the concept of $_{e}A$ -sets in biminimal structure spaces and study some fundamental properties of $_{e}A$ -sets in biminimal structure spaces and investigate some of their properties.

Definition 3.2.1 A subset *A* of a biminimal structure space (X, m_x^{-1}, m_x^{-2}) is said to be $(i, j)m_x$ -locally closed if there exist *G* and *F* such that $A = G \cap F$ when *G* is an m_x^{-1} -open set *G* and *F* is an m_x^{-1} -closed set, where i, j = 1 or 2 and $i \neq j$.

The family of all $(i, j)m_x$ -locally closed sets in biminimal structure spaces (X, m_x^1, m_x^2) is denoted by $(i, j)m_x$ - $\mathcal{LC}(X, m_x^1, m_x^2)$, where i, j = 1 or 2 and $i \neq j$.

Example 3.2.2 Let $X = \{a, b, c\}$. Define *m*-structures m_x^{1} and m_x^{2} on X as follows : $m_x^{1} = \{\emptyset, \{b, c\}, X\}$ and $m_x^{2} = \{\emptyset, \{c\}, X\}$. Thus (1, 2)-**LC**(X, $m_x^{1}, m_x^{2}) = \{\emptyset, \{b\}, \{b, c\}, \{a, b\}, X\}$.

Lemma 3.2.3 Let *S* be a subset of a biminimal stucture space (X, m_x^{-1}, m_x^{-2}) and let *i*, *j* = 1 or 2 and *i* \neq *j*. If *S* is an $(i, j)m_x$ -locally closed set then there exists an m_x^{-1} -open set *U* such that $S = U \cap m_x^{-1} Cl(S)$

Proof. Let *S* be an (*i*, *j*) m_x -locally closed set. Then there exist *U* and *F* such that $S = U \cap F$ where *U* is m_x^i -open and *F* is m_x^j -closed. Since $S = U \cap F$, $S \subseteq F$. Thus $m_x^j Cl(S) \subseteq m_x^j Cl(F)$. Since *F* is m_x^j -closed, $m_x^j Cl(S) \subseteq F$. Then $U \cap m_x^j Cl(S) \subseteq U \cap F = S$. Since $S \subseteq U$ and $S \subseteq m_x^j Cl(S)$. Then $S \subseteq U \cap m_x^j Cl(S)$. Therefore, there exists an m_x^i -open set *U* such that $S = U \cap m_x^j Cl(S)$.

The converse of Lemma 3.2.3 is true if m_{χ}^{j} has property \mathfrak{B} as a following proposition.

Proposition 3.2.4. Let *S* be a subset of a biminimal stucture space (*X*, m_x^{i} , m_x^{2}) and let m_x^{j} has property \mathfrak{B} , where *i*, *j* = 1 or 2 and *i*≠*j*. Then *S* is an (*i*, *j*) m_x -locally closed set iff there exists an m_x^{i} -open set *U* such that *S* = $U \cap m_x^{i}Cl(S)$.

Proof. (⇒) By Lemma 3.2.3.

(\Leftarrow) Let $S = U \cap m_x^{\ j}Cl(S)$, for some $U \in m_x^{\ i}$. Since $m_x^{\ j}$ has property \mathfrak{B} , $m_x^{\ j}Cl(S)$ is closed in $(X, m_x^{\ j})$. Thus S is an $(i, j)m_x$ -locally closed.

Definition 3.2.5. Let (X, m_x^{-1}, m_x^{-2}) be a biminimal structure space. A subset *M* of *X* is said to be an $(i, j)m_x^{-e}A$ -set if there exist *G* and *R*, such that $M = G \cap R$ when $G \in m_x^{-1}$ and *R* is m_x^{-1} -regular closed, where *i*, *j* = 1 or 2 and *i*≠*j*.

The family of all $(i, j)m_x - e\mathcal{A}$ -sets in a biminimal structure space (X, m_x^{-1}, m_x^{-2}) is denoted by $(i, j) - e\mathcal{A}(X, m_x^{-1}, m_x^{-2})$ where i, j = 1 or 2 and $i \neq j$.

Example 3.2.6. Let $X = \{1, 2, 3\}$. Define *m*-structures m_{χ}^{1} and m_{χ}^{2} on *X* as follows : $m_{\chi}^{1} = \{\emptyset, \{1, 2\}, \{1, 3\}, X\}$ and $m_{\chi}^{2} = \{\emptyset, \{2\}, \{1, 2\}, X\}$ which are *m*-structures on *X*. It follows that $RC(X, m_{\chi}^{2}) = \{\emptyset, X\}$. Thus $(1, 2) \, \mathcal{A}(X, m_{\chi}^{1}, m_{\chi}^{2}) = \{\emptyset, \{1, 2\}, \{1, 3\}, X\}$.

Lemma 3.2.7. Let (X, m_x^{1}, m_x^{2}) be a biminimal structure space m_x^{j} has property \mathfrak{B} . If a subset *M* of *X* is an *(i, j)* m_x - \mathcal{A} -set, then *M* is *(i, j)m_x*-locally closed, where *i, j* = 1 or 2 and *i* \neq *j*.

Proof. Let *M* is an $(i, j)m_x$ -*A*-set. Then there exist *G* and *R* such that $M = G \cap R$ where $G \in m_x^i$ -open and *R* is m_x^j -regular closed. Since *R* is m_x^j -regular closed, $R = m_x^i Cl(m_x^i Int(R))$. But m_x^j has property **B**, then $m_x^i Cl(m_x^i Int(R))$ is closed. Hence *R* is m_x^j -closed. It follows that *M* is an $(i, j)m_x$ -locally closed.

Proposition 3.2.8 Let $(X, m_x^{\ 1}, m_x^{\ 2})$ be a biminimal structure space and $m_x^{\ j} \subseteq m_x^{\ i}$ has the property ^(B). If a subset *M* of *X* is both $(i, j)m_x$ -semi-open and $(i, j)m_x$ -locally closed, then *M* is an $(i, j)m_x$ -eA-sets, where i, j = 1 or 2 and $i \neq j$. **Proof.** Let *M* be both $(i, j)m_x$ -semi-open and $(i, j)m_x$ -locally closed. It follows that $M \subseteq m_x^{\ j}Cl(m_x^{\ j}Int(M))$ such that $M = U \cap m_x^{\ j}Cl(M)$. Since $m_x^{\ j}Cl(M) \subseteq m_x^{\ j}Cl(m_x^{\ j}Int(M))$. But $m_x^{\ j}Cl(m_x^{\ j}Int(M)) \subseteq m_x^{\ j}Cl(M)$, hence $m_x^{\ j}Cl(M) = m_x^{\ j}Cl(m_x^{\ j}Int(M))$ and $m_x^{\ j}Cl(m_x^{\ j}Int(M))$ is $m_x^{\ j}$ -regular closed. Consequently $m_x^{\ j}Cl(M)$ is $m_x^{\ j}$ -regular closed. Therefore, *M* is an $(i, j)m_x$ -A-set.

Definition 3.2.9 Let (X, m_x^{-1}, m_x^{-2}) be a biminimal structure space and $A \subseteq X$. Then A is said to be an $(i, j)m_x^{-t}$ -set if $m_x^{-i}Int(A) = m_x^{-i}Int(m_x^{-j}CI(A))$, where i, j = 1 or 2 and $i \neq j$.

The family of all $(i, j)m_x^{-t}$ -sets in a biminimal structure spaces (X, m_x^{-1}, m_x^{-2}) is denoted by $(i, j)^{-t}(X, m_x^{-1}, m_x^{-2})$ for i, j = 1 or 2 and $i \neq j$.

Example 3.2.10 Let $X = \{1, 2, 3\}$. Define *m*-structures m_x^{\dagger} and m_x^2 on X as follows : $m_x^{\dagger} = \{\emptyset, \{1\}, \{3\}, \{2, 3\}, X\}$ and $m_x^2 = \{\emptyset, \{1\}, \{1, 2\}, X\}$.

Thus $(1, 2)^{-t}(X, m_x^{-1}, m_x^{-2}) = \{\emptyset, \{3\}, \{2, 3\}, X\}.$

Theorem 3.2.11 Let (X, m_x^{-1}, m_x^{-2}) be a biminimal structure space and $A \subseteq X$. Then A is an $(i, j)m_x^{-t}$ -set if and only if A is an $(i, j)m_x^{-semi-closed}$, where i, j = 1 or 2 and $i \neq j$. **Proof.** (\Longrightarrow) Let A be an $(i, j)m_x^{-t}$ -set. Then $m_x^{-i}Int(A) = m_x^{-i}Int(m_x^{-j}Cl(A))$. Thus $m_x^{-i}Int(m_x^{-j}Cl(A)) \subseteq A$. Hence A is an $(i, j)m_x^{-semi-closed}$.

 $(\Leftarrow) \text{ Let } A \text{ be an } (i, j)m_x \text{-semi-closed. Then } m_x^{i}\text{Int}(m_x^{j}Cl(A))$ $\subseteq A. \text{ Thus } m_x^{i}\text{Int}(m_x^{j}\text{Int}(m_x^{j}Cl(A))) \subseteq m_x^{i}\text{Int}(A). \text{ Hence } m_x^{i}\text{Int}(m_x^{j}Cl(A)) \subseteq m_x^{i}\text{Int}(A). \text{ Since } m_x^{i}\text{Int}(A) \subseteq m_x^{i}\text{Int}(m_x^{j}Cl(A)). \text{ Thus } m_x^{i}\text{Int}(A) = m_x^{i}\text{Int}(m_x^{j}Cl(A)). \text{ Hence } A \text{ is an } (i, j)m_x^{-t}\text{-set.}$

Definition 3.2.12 Let (X, m_x^{-1}, m_x^{-2}) be a biminimal structure space and $A \subseteq X$. Then A is said to be an

(*i*, *j*) $m_x^{-\mathcal{B}}$ -set if $A = U \cap T$, when *U* is an m_x^{i} -open set and *T* is an m_x^{j-t} -set, where *i*, *j* = 1 or 2 and *i≠j*.

The family of all $(i, j)m_x$ -B-sets in a biminimal structure space (X, m_x^{-1}, m_x^{-2}) is denoted by (i, j)-B (X, m_x^{-1}, m_x^{-2}) , where i, j = 1 or 2 and $i \neq j$.

Example 3.2.13 Let $X = \{1, 2, 3\}$. Define *m*-structures m_x^{\dagger} and m_x^2 on X as follows : $m_x^{\dagger} = \{\emptyset, \{1\}, \{2\}, \{2, 3\}, X\}$ and $m_x^2 = \{\emptyset, \{1\}, \{3\}, \{2, 3\}, X\}$. Then $\{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, X\}$ are m_x^2 -t-sets. Therefore, (1, 2)- $\mathbb{B}(X, m_x^{\dagger}, m_x^2) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, X\}$.

Theorem 3.2.14 Let (X, m_x^{-1}, m_x^{-2}) be a biminimal structure space and $A \subseteq X$. If A is an $(i, j)m_x$ -A-set, then A is an $(i, j)m_x$ -B-set for all i, j = 1 or 2 and $i \neq j$.

Proof. Let *A* be an $(i, j)m_x$ - \mathcal{A} -set. Then there exist *G* and *R* such that $A = G \cap R$ where *G* is m_x^i -open in (X, m_x^i) and *R* is an m_x^j -regular closed. By Proposition 3.1.5, *R* is an m_x^{j-t} -set. Hence *A* is an $(i, j)m_x$ - \mathcal{B} -set.

Proposition 3.2.15 Let $(X, m_x^{\dagger}, m_x^2)$ be a biminimal structure space and *M* be a subset of *X*. If *M* is an (i, j) m_x -locally closed set, then it is also an $(i, j)m_x$ - \mathcal{B} -set, where i, j = 1 or 2 and $i \neq j$.

Proof. Let *M* be $(i, j)m_x$ -locally closed set. Then there exist *U* and *B* such that $M = U \cap B$ where *U* is m_x^i -open and *B* is m_x^j -closed. Since *B* is m_x^j -closed, $B = m_x^j Cl(B)$. Thus $m_x^j Int(B) = m_x^j Int(m_x^j Cl(B))$. Hence *B* is an m_x^j -t-set. Thus *M* is an $(i, j)m_x$ -B-set.

Definition 3.2.16 Let (X, m_x^{-1}, m_x^{-2}) be a biminimal structure space and $A \subseteq X$. Then A is said to be an $(i, j)m_x$ - \mathcal{C} -set if $A = U \cap B$, when U is an m_x^{-1} -open and B is m_x^{-1} -preclosed, where i, j = 1 or 2 and $i \neq j$.

The family of all $(i, j)m_x$ - \mathcal{C} -sets in a biminimal structure space (X, m_x^{-1}, m_x^{-2}) is denoted by (i, j)- $\mathcal{C}(X, m_x^{-1}, m_x^{-2})$, where i, j = 1 or 2 and $i \neq j$.

Example 3.2.17 Let $X = \{1, 2, 3\}$. Define *m*-structures m_x^{1} and m_x^{2} on X as follows : $m_x^{1} = \{\emptyset, \{1\}, \{2\}, \{2, 3\}, X\}$ and $m_x^{2} = \{\emptyset, \{1\}, \{3\}, \{2, 3\}, X\}$. Thus $\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, X$ are preclosed in (X, m_x^{2}) . Therefore, (1, 2)- $\mathbb{C}(X, m_x^{1}, m_x^{2}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, X\}$.

Theorem 3.2.18. Let (X, m_x^{-1}, m_x^{-2}) be a biminimal structure space and $A \subseteq X$. If A is an $(i, j)m_x^{-1}A$ -set, then A is an $(i, j)m_x^{-1}C$ -set for all i, j = 1 or 2 and $i \neq j$.

Proof Let *A* be an *(i, j)m*_x- \mathcal{A} -set. Then there exist *G* and *R* such that $A = G \cap R$ where *G* is m_x^i -open and *R* is an m_x^j - regular closed. Since $R = m_x^j Cl(m_x^j Int(R))$, thus

 $m_{\chi}^{\ j}Cl(m_{\chi}^{\ j}Int(R)) \subseteq R$. Hence R is an $m_{\chi}^{\ j}$ -preclosed. Therefore, A is an $(i, j)m_{\chi}$ -C-set.

Proposition 3.2.19 Let (X, m_x^{-1}, m_x^{-2}) be a biminimal structure space and *M* be a subset of *X*. If *M* is an $(i, j)m_x$ -locally closed set, then it is also an $(i, j)m_x$ - \mathbb{C} -set, where i, j = 1 or 2 and $i \neq j$.

Proof. Let *M* be an $(i, j)m_x$ -locally closed set. Then there exist *U* and *B* such that $M = U \cap B$ where *U* is m_x^i -open in (X, m_x^i) and *B* is m_x^j -closed.

It follows that $m_x^j Cl(m_x^j Int(B)) \subseteq m_x^j Cl(B) = B$. Then *B* is an m_x^j -preclosed. Hence *M* is an $(i, j)m_x$ - \mathcal{C} -set.

Proposition 3.2.20 Let *A* be a subset of a biminimal stucture space (X, m_x^{-1}, m_x^{-2}) and m_x^{-j} has the property \mathfrak{B} . Then *A* is an $(i, j)m_x^{-C}$ -set iff $A = U \bigcap m_x^{-j} pcl(A)$ for some $U \in m_x^{-i}$, where i, j = 1 or 2 and $i \neq j$.

Proof. (\Rightarrow) Let *A* be (*i*, *j*) m_x - \mathcal{C} -set. Then there exist *U* and *B* such that $A = U \cap B$ where *U* is m_x^i -open and *B* is m_x^j -preclosed. From $A \subseteq B$, $m_x^j pcl(A) \subseteq m_x^j pcl(B)$ by Proposition 2.11, $m_x^j pcl(B) = B \cup m_x^j Cl(m_x^j Int(B))$. As *B* is m_x^j -preclosed, $m_x^j Cl(m_x^j Int(B)) \subseteq B$. Hence $m_x^j pcl(B) = B$. Thus $m_x^j pcl(A) \subseteq B$. Therefore $A = U \cap m_x^j pcl(A)$.

(\leftarrow) Let $A = U \cap m_{\chi}^{j} pcl(A)$ for some $U \in m_{\chi}^{i}$. Since $m_{\chi}^{j} pcl(A)$ is an m_{χ}^{j} -preclosed. Therefore, A is an (*i*, *j*) m_{χ} - \mathcal{C} -set.

Proposition 3.2.21 Let *A* be a subset of a biminimal stucture space (X, m_x^{-1}, m_x^{-2}) and m_x^{-j} has the property \mathfrak{B} . Then $A = U \cap m_x^{-j}Cl(m_x^{-j}Int(A))$ for some $U \in m_x^{-j}$ if and only if *A* is an m_x^{-j} -semi-open and $(i, j)m_x$ - \mathfrak{C} -set, where *i*, j = 1 or 2 and $i \neq j$.

Proof. (⇒) Let $A = U \cap m_x^j Cl(m_x^j Int(A))$ for some $U \in m_x^i$. Then $A \subseteq m_x^j Cl(m_x^j Int(A))$. Thus A is an m_x^j -semiopen. By Lemma 2.6, $m_x^j Cl(m_x^j Int(A))$ is m_x^j -closed. Since $m_x^j Int(m_x^j Cl(m_x^j Int(A))) \subseteq m_x^j Cl(m_x^j Int(A)), m_x^j Cl(m_x^j Int(m_x^j Cl(m_x^j Int(A)))) \subseteq m_x^j Cl(m_x^j Int(A))$. Hence $m_x^j Cl(m_x^j Int(A))$ is m_x^j -preclosed. Then A is an $(i, j)m_x^- C$ -set.

(\Leftarrow) Let A be an m_{χ}^{J} -semi-open and

(*i*, *j*) m_x -C-set. By Proposition 3.2.20, $A = U \cap m_x^j pcl(A)$ for some $U \in m_x^i$. Since *A* is m_x^j -semi-open. Then $A \subseteq m_x^j Cl(m_x^j Int(A))$. Since m_x^j has the property \mathfrak{B} and by Proposition 2.11, $m_x^j pcl(A) = A \cup m_x^j Cl(m_x^j Int(A))$. Thus $m_x^j pcl(A) = m_x^j Cl(m_x^j Int(A))$. Hence $A = U \cap m_x^j Cl(m_x^j Int(A))$ for some $U \in m_{x}^{i}$.

Theorem 3.2.22 Let *A* be a subset of a biminimal stucture space (X, m_x^{-1}, m_x^{-2}) and m_x^{-j} has the property \mathfrak{B} . If a subset *M* of *X* is an m_x^{-j} -semi-open and $(i, j)m_x^{-c}$ -set, then it is an $(i, j)m_x^{-c}$ -set.

Proof. Let *M* be an m_x^{j} -semi-open and $((i, j)m_x - C$ -set. By Proposition 3.2.21, then $M = U \cap m_x^{j}Cl(m_x^{j}Int(M))$, for some $U \in m_x^{j}$. Since $m_x^{j}Cl(m_x^{j}Int(M))$ is m_x^{j} -regular closed. Therefore, *M* is an $(i, j)m_x$ -*A*-set.

Definition 3.2.23 Let (X, m_x^{-1}, m_x^{-2}) and

 (Y, m_v^{-1}, m_v^{-2}) be biminimal structure spaces.

- A function $f: (X, m_X^{-1}, m_X^{-2}) \longrightarrow (Y, m_Y^{-1}, m_Y^{-2})$ is said to be (1) (i, j)-semi-continuous if $f^{-1}(V) \in (i, j)$ -SO(X, $m_y^{-1}, m_y^{-2})$ for all $V \in m_y^{-1}$.
 - (1) (*i*, *j*)- \mathcal{LC} -continuous if $f^{-1}(V) \in (i, j)$ - $\mathcal{LC}(X, m_v^{-1}, m_v^{-2})$ for all $V \in m_v^{-i}$.
 - (1) (*i*, *j*)- \mathcal{A} -continuous if $f^{-1}(V) \in (i, j)$ - $\mathcal{A}(X, m_v^{-1}, m_v^{-2})$ for all $V \in m_v^{-1}$.
 - (1) (*i*, *j*)- \mathcal{C} -continuous if $f^{-1}(V) \in (i, j)$ - $\mathcal{C}(X, m_x^{-1}, m_x^{-2})$ for all $V \in m_y^{-i}$.

Proposition 3.2.24 Let $(X, m_{y}^{1}, m_{y}^{2})$ and

 (Y, m_Y^{-1}, m_Y^{-2}) be biminimal structure spaces. A function $f: (X, m_X^{-1}, m_X^{-2}) \longrightarrow (Y, m_Y^{-1}, m_Y^{-2})$ be a mapping. If *f* is (i, j)-*A*-continuous then *f* is (i, j)-*LC*-continuous.

Proof. Let f be (i, j)- \mathcal{A} -continuous and $V \in m_{\gamma}^{i}$. Then $f^{-1}(V) \in (i, j)$ - $\mathcal{A}(X, m_{\chi}^{i}, m_{\chi}^{2})$. By Lemma 3.2.7, we have $f^{-1}(V) \in (i, j)$ - $\mathcal{LC}(X, m_{\chi}^{i}, m_{\chi}^{2})$. Hence f is (i, j)- \mathcal{LC} -continuous.

Theorem 3.2.25 Let $(X, m_{\chi}^{-1}, m_{\chi}^{-2})$ and $(Y, m_{\gamma}^{-1}, m_{\gamma}^{-2})$ be biminimal structure spaces and m_{χ}^{-1} has the property \mathfrak{B} . If a mapping $f: (X, m_{\chi}^{-1}, m_{\chi}^{-2}) \rightarrow$

 (Y, m_Y^{-1}, m_Y^{-2}) is (i, j)-semi-continuous and (i, j)- \mathcal{LC} -continuous then f is (i, j)- \mathcal{A} -continuous.

Proof. Let *f* be an (*i*, *j*)-semi-continuous and (*i*, *j*)- \mathcal{LC} -continuous and $V \in m_Y^i$. Then $f^{-1}(V) \in (i, j)$ - $\mathcal{SO}(X, m_X^1, m_X^2)$ and $f^{-1}(V) \in (i, j)$ - $\mathcal{LC}(X, m_X^1, m_X^2)$. By Proposition 3.2.8, thus $f^{-1}(V) \in (i, j)$ - $\mathcal{A}(X, m_X^1, m_X^2)$. Therefore, *f* is (*i*, *j*)- \mathcal{A} -continuous.

Theorem 3.2.26 Let (X, m_x^{1}, m_x^{2}) and (Y, m_y^{1}, m_y^{2}) be biminimal structure spaces. If a mapping

 $f: (X, m_X^{-1}, m_X^{-2}) \longrightarrow (Y, m_Y^{-1}, m_Y^{-2})$ is (i, j)-semi-continuous and (i, j)- \mathcal{C} -continuous then f is (i, j)- \mathcal{A} -continuous.

Proof. Let *f* be an (*i*, *j*)-semi-continuous and (*i*, *j*)- \mathbb{C} -continuous and $V \in m_{Y}^{i}$. Then $f^{-1}(V) \in (i, j)$ - $\mathcal{SO}(X, m_{X}^{i}, m_{X}^{2})$ and $f^{-1}(V) \in (i, j)$ - $\mathcal{C}(X, m_{X}^{i}, m_{X}^{2})$. By Theorem 3.2.22, thus $f^{-1}(V) \in (i, j)$ - $\mathcal{A}(X, m_{X}^{i}, m_{X}^{2})$. Therefore, *f* is (*i*, *j*)- \mathcal{A} -continuous.

Conclusion

In this paper, we introduced the concept of \mathcal{A} -sets in biminimal structure spaces. We also studied some properties of \mathcal{A} -sets and \mathcal{A} -continuous function on the space. The following implications hold for a biminimal structure spaces. These implications are not reversible.

Acknowledgement

The authors would like to thank the referees for helpful comments and suggestions on the manuscript.

References

- Andrijevic D. Semi-preopen sets. (1986), Math. Vesnik., 38, 24-32.
- Boonpok C. Almost and weakly M-continuous functions in m-spaces. Far East J.Math.Sci, 43 (2010), 29-40
- Boonpok C. *Biminimal structure space*. (2010), Int. Math. Forum, 5(15), 703-707
- Boonpok C. M-continuous functions on biminimal structure space. Far East J.Math.Sci, 43 (2010), 41-58
- Bourbaki N. General Topology. Part 1. (1996), Massachusetts, Addison-Wesley.
- Császár Á. connected sets. Acta Math. Hungar. (2003), 101(4): 273-279.
- 7. Dugundji J. *Topology*. (1972), Boston, Allyn and Bacon.
- Erguang Y and Pengfei Y.On decomposition of A-continuity. (2006), Acta Math. Hungar., 110, 309-313.
- Ganster M. and Reilly, I. L. A decomposition of continuity. (1990). Acta Math.Hungar., 56, 299-301.

- Kelly J.C *Bitopological space*. (1969), Pro.London Math.Soc.,39130,71-79
- Keun Min W. *m-open set and M-continuous functions*. (2010), Commun. Korean. Math. Soc. 25, No.2, pp 251-256
- Levine N. Semi-open sets and semi-continuity in topological spaces. (1963), Amer. Math. Monthly, 70, 36-41.
- Mashhour A, Abd El-Monsef M, and El-Deeb S.On pre-continuous and weak precontinuous mappings. (1982), Proc. Math. and Phys. Soc. Egypt., 53, 47-53.
- Maki H, Umehara J, Noiri T. Every topological space is pre T1/2. Fac. Sci. Kochi Univ. ser. Math., pp 33-42
- Maki H, Rao K.C, Nagoor Gani A. On generalized semi-open and preopen sets. Pure Appl. Math. Sci. 1999; 49: 17-29.
- Nj_astad O. On some classes of nearly open sets. (1965), Pacipic J. Math., 15, 961-970.
- Noiri T and Popa V.A generalized of some forms of g-irresolute function. European J. of Pure and Appl. Math. 2(4)(2009), 473-493
- Popa V and Noiri T. *On M-continuous function*.(1965), Anal.Univ. "Dunarea de Jos" Galati, Ser.Mat.Fiz.Mec. Teor.(2),18(23), 31-41
- Rosas E. Some new types of open and closed sets in minimal structures-II. (2009), Int. Math. Forum, No.44, 2185-2198.
- 20. Suantai S. *Topology*. Department of Mathematics, Faculty of Science, Chiang Mai University.
- Tong J. A decomposition of continuity. (1986), Acta Math. Hungar., 48, 11-15.
- 22. Tong J. On decomposition of continuity in topological spaces. (1989), Acta Math. Hungar., 48, 11-15.