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Abstract 

In	 this	 article,	we	 introduce	 the	 concepts	 of	 -sets	 in	 biminimal	 structure	 spaces	 and	 investigate	 some	of	 their	

properties.	Moreover,	the	notions	of	 -sets	and	 -continuous	functions	in	biminimal	structure	spaces	were	studied.

Keywords : -set,	 -continuous	function.

Introduction 
In	 1972,	 J.	 Dugundji7	 introduced	 the	 concepts	 of	

regular	closed	sets	in	topological	spaces.	Let	(X )	be	a	

topological	 space	 and	A X,	 then	A	 is	 called	 regular	

closed	 if	 and	 only	 if	A=Cl(Int(A)).	 In	 1986,	 J.Tong21	

introduced	 the	 concepts	 and	 properties	 of	 -sets	 in	

topological	spaces.	Let	A	be	a	subset	of	a	 topological	

space	(X )	then	A	is	an	 -set	in	(X )	if	A=U B when	

U	is	open	and	B is	regular	closed	in	(X ).	In	addition,	

J.Tong21	 introduced	 the	 concepts	 of	 -continuous	

functions	from	a	topological	space	(X )	to	a	topological	

space	(Y ).	Let f be	a	function	from	X to	Y,	then	f is	

-continuous	function	if	and	only	if	the	inverse	image	of	

each	open	set	in	Y is	an	 -set	in	X.	In	1990,	M.	Ganster,	

and	Reilly,	I.	L.10	improved	J.	Tong’s	decomposition	result	

and	provided	a	decomposition	of	 -continuous.	In	2000,	

the	concepts	of	minimal	structure	spaces	were	introduced	

by	V.	Popa	and	T.	Noiri18.	A	pair	 (X, m
X
)	 is	a	minimal	

structure	space	if	and	only	if X 	Ø and	m
X 
is	family	of	

P(X)	with	Ø,	X∈m
X
.	Moreover,	they	also	introduced	the	

concepts	of	m
X
-open	sets	and m

X
-closed	sets	in	minimal	

structure	 spaces.	 In	 1963,	 J.	 C.	 Kelly9	 introduced	 the	

concepts	 of	 bitopological	 spaces	 which	 consist	 of	 a	

nonempty	set	and	 two	 topological	spaces.	 In	2010,	C.	

Boonpok2	introduced	the	concepts	of	biminimal	structure	

spaces	which	consist	of	a	nonempty	set	and	two	minimal	

structures.	 Furthermore,	 C.	 Boonpok2	 defined	m
X
1m

X
2-

closed	sets	in	biminimal	structure	spaces	and	the	comple-

ment	of	m
X
1m

X
2-closed	sets	is	call	m

X
1m

X
2-open	sets.	In	

2010,	C.	Boonpok	[4]	defined	(i, j) m
X
-regular	open	sets	

in	 biminimal	 structure	 spaces	 and	 he	 also	 defined

(i, j) m
X
-regular	closed	sets	as	complement	of	 (i,j) m

X
-

regular	open	sets	for	i, j =	1, 2	and	i j.	

	 In	 this	article	we	introduce	the	concepts	of	

-sets	 in	 biminimal	 structure	 spaces	 and	 -continuous	

functions	in	biminimal	structure	spaces.	Also,	we	study	

some	properties	of	 -sets	and	 -continuous	functions	

in	biminimal	structure	spaces.
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Preliminaries 
	 In this section, we will give some definitions and 

notations, deal with some preliminaries and some useful 

results that will be duplicated in later sections.

Definition 2.110 Let (X ) be a topological space and M 

 X. Then M is called an -set if M = U B when U is 

open and B is regular closed in X.

	 The family of all -sets in a topological space 

(X ) is denoted by (X ).

Definition 2.217 Let X be a nonempty set and P(X) be the 

power set of X. A subfamily m
X
 of P(X) is called a minimal 

structure (briefly an m-structure) on X if Ø ∈ m
X
 and X 

∈ m
X
.

	 The pair (X, m
X
), we denote a nonempty set X 

with an m-structure m
X
 on X and it is called a minimal 

structure space (briefly an m-space). Each member of m
X
 

is said to be m
X
-open and the complement of an m

X
-open 

set is said to be m
X
-closed.

Definition 2.317 Let X be a nonempty set and m
X
 an m-

structure on X. For a subset A of X the m
X
-interior of A 

and the m
X
-closure of A with respect to m

X
 are defined 

as follows:

	 m
X
Int(A) =∪{ U:U⊆A, U ∈ m

X 
},

	 m
X
Cl(A) =∩{ F:A⊆F, X \ F ∈ m

X
 }. 

Lemma 2.414 Let X be a nonempty set and m
X
 an 	

m-structure on X. For any subsets A and B of X, the 	

following properties hold:

	 (1)	 m
X
Cl(X \ A) = X \ m

X
Int(A) and 

		  m
X
Int(X \ A) = X \ m

X
Cl(A), 

	 (2) 	If (X \ A) ∈ m
X
, then m

X
Cl(A) = A and 

	 	 if A ∈ m
X
 , then m

X
Int(A) = A,

	 (3)	 m
X
Cl(Ø) = Ø, m

X
Cl(X) = X, 

		  m
X
Int(Ø) = Ø and m

X
Int(X) = X, 

	 (4) 	If A ⊆ B, then m
X
Cl(A) ⊆ m

X
Cl(B) and 

	 	 m
X
Int(A) ⊆ m

X
Int(B), 

	 (5) 	A ⊆ m
X
Cl(A) and m

X
Int(A) ⊆ A,

	 (6) 	m
X
Cl(m

X
Cl(A)) = m

X
Cl(A) 

	 	 and m
X
Int(m

X
Int(A)) = m

X
Int(A),

	 (7) 	m
X
Int(A∩B) = m

X
Int(A)∩m

X
Int(B) and

 	 	 m
X
Int(A) ∪ m

X
Int(B) ⊆ m

X
Int(A∪B),

	 (8) 	m
X
Cl(A∪B) = m

X
Cl(A)∪m

X
Cl(B) and

	  	 m
X
Cl(A∩B) ⊆ m

X
Cl(A) ∩ m

X
Cl(B).

Definition 2.513 An m-structure m
X
 on a nonempty set A 

is said to have property  if the union of any family of 

subsets belonging to m
X
 belongs to m

X
.

Lemma 2.617 Let X be a nonempty set and m
X
 is an m-

structure on X satisfying property . 

For A ⊆ X the following properties hold:

	 (1) 	A ∈ m
X
 if and only if m

X
Int(A) = A,

	 (2) 	A is m
X
-closed if and only if m

X
Cl(A) = A,

	 (3) 	m
X
Int(A) is m

X
-open and m

X
Cl(A) 

	 	 is m
X
-closed.

Definition 2.73 Let (X, m
X
) be an m-space and R ⊆ X. 

Then R is called m
X
-regular closed if and only if R = 

m
X
Cl(m

X
Int(R)). 

	 The family of all m
X
-regular closed sets in an 

m
X
-space (X, m

X
) is denoted by RC(X, m

X
)

Definition 2.819 A subset A of an m-space

(X, m
X
) is called an m-preopen set if A ⊆

m
X
Int(m

X
Cl(A)) and an m

X
-preclosed set if 

m
X
Cl(m

X
Int(A)) ⊆ A.

	 The family of all m
X
-preopen sets in an m- space 

(X, m
X
) is denoted by PO(X, m

X
) and m

-
preclosed sets in 

an m-space (X, m
X
) is denoted by PC(X, m

X
) 

Definition 2.919 Let (X, m
X
) be an m-space and A ⊆ X, 

the m
X
-preclosure of A is denoted by m

X
pcl(A) is 	

defined as the intersection of all m
X
-preclosed of (X, m

X
) 

containing A.

Proposition 2.1019 Let (X, m
X
) be an m-space and A, B 

⊆ X. If A ⊆ B then m
X
pcl(A) ⊆ m

X
pcl(B).

Proposition 2.1119 Let (X, m
X
) be an m-space and A ⊆ 

X. If m
X
 satisfies the property . Then m

X
pcl(A) = A 

∪m
X
Cl(m

X
Int(A)).

Definition 2.122 Let A be a nonempty set and m
X
1m

X
2 be 

m-structures on X. A triple (X, m
X
1, m

X
2) is called a bi-

minimal structure space (briefly bim- space). 

	 Let (X, m
X
1, m

X
2) be a biminimal structure space 

and A ⊆ X. The m
X
-closure and m

X
-interior of A with 

respect to m
X

i are denoted by m
X
Cl(A) and m

X
Int(A) 	

respectively, for i, j = 1, 2.

	 Each member of m
X
i is said to be an m

X
i-open 

set and the complement of an open set is said to be 	

m
X
i-closed, for i, j = 1, 2.
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Definition 2.134 A subset A of biminimal structure spaces 

(X, m
X
1, m

X
2) is said to be

	 (1)	 (i, j)m
X
-regular open if A = m

X
iInt(m

X
jCl(A)), 	

	 	 where i, j = 1 or 2 and i j,

	 (2)	 (i, j)m
X
-semi-open if A ⊆ m

X
iCl(m

X
jInt(A)) 	

		  where i, j = 1 or 2 and i j,

	 (3)	 (i, j)m
X
-preopen if A ⊆ m

X
iInt(m

X
jCl(A)), 	

	 	 where i, j = 1 or 2 and i j.

	 The complement of an (i, j)m
X
-regular open (resp. 

((i, j)m
X
-semi-open, (i, j)m

X
-preopen) set is called (i, j)

m
X
-regular closed (resp,((i, j)m

X
-semi-closed, (i, j)m

X
-

preclosed).

Lemma 2.144 Let (X, m
X
1, m

X
2) be a biminimal structure 

space and A be a subset of X. Then

	 (1)	 A is (i, j)m
X
-regular closed if and only if A = 

m
X
iCl(m

X
jInt(A)),

	 (2)	 A is (i, j)m
X
-semi-closed if and only if 

m
X
iInt(m

X
jCl(A)) ⊆ A,

	 (3)	 A is (i, j)m
X
-preclosed if and only if 

m
X
iCl(m

X
jInt(A)) ⊆ A.

Definition 2.15 [4] Let (X, m
X
1, m

X
2) and 

(Y, m
Y
1, m

Y
2) be biminimal structure space. A function f : 

(X, m
X
1, m

X
2) → (Y, m

Y
1, m

Y
2) is said to be (i, j)-M-con-

tinuous at a point x ∈ X and each V ∈ m
Y
i containing 

f(X), there exists U ∈ m
X
j containing x such that f(U) ⊆ 

V, where i, j = 1 or 2 and i j.

	 A function f : (X, m
X
1, m

X
2) → (Y, m

Y
1, m

Y
2) is 

said to be (i, j)-M-continuous if it has this property at each 

point x ∈ X. 

Theorem 2.164 For a function f : (X, m
X

1, m
X

2) →  

(Y, m
Y
1, m

Y
2), the following properties are equivalent:

	 (1)	 f is (i, j)-M-continuous;

	 (2)	 f – 1(V) = m
X
jInt(f – 1(V)) for every V ∈ m

Y
i 

	 (3)	 f (m
X
iCl (A)) ⊆ m

Y
iCl(f(A)) for every subset  

		  A of X;

	 (4)	 m
X
jCl(f – 1(B)) ⊆ f – 1(m

Y
iCl (B)) for every 	

	 	 subset B of Y;

	 (5)	 f – 1(m
Y
iInt(B)) ⊆ m

X
jInt(f – 1(B)) for every 	

	 	 subset B of Y;

	 (6)	 m
X
jCl(f – 1(F)) = f – 1(F) for every m

Y
i-closed 	

	 	 set F of Y.

Results and Discussion
 -sets in minimal structure space

	 In this section, we introduce the concept of 

-sets in minimal structure spaces. 

Definition 3.1.1 Let (X, m
X
) be an m-space. A subset M 

of A is said to be an m
X
- -set if there exist G and R such 

that M = G∩R when G is m
X
-open and R is m

X
-regular 

closed.

	 The family of all m
X
- -set in an m-space (X, m

X
) 

is denoted by (X, m
X
).

Example 3.1.2 Let X = {1, 2, 3}. Define an m-structure 

m
X
 on X as follows : m

X 
= {Ø, {2}, {1, 2}, {1, 3}, X}. Then 

RC(X, m
X
) = {Ø, {2}, {1, 3}, X} and (X, m

X
) = {Ø, {1}, 

{2}, {1, 2}, {1, 3}, X}. 

Definition 3.1.3 Let (X, m
X
) be an m-space and A ⊆ X, 

then A is said to be an m
X
- -set if m

X
Int(A) = m

X
Int(m

X
Cl(A)).

	 The family of all m
X
- -set in an m-space (X, m

X
) 

is denoted by (X, m
X
).

Example 3.1.4 Let X = {1, 2, 3} and define m
X
 = {Ø, {1}, 

{2}, {1, 3}, {2, 3}, X} be an m-structure on X. It follows 

that (X, m
X
) = {Ø, {1}, {2}, {3}, {1, 3}, {2, 3}, X}. 

Proposition 3.1.5 Let (X, m
X
) be an m-space and R ⊆ 

X. If R is m
X
-regular closed then R is an m

X
- -set. 

Proof. Let R be an m
X
-regular closed. Then R = m

X
Cl 

(m
X
Int(R)). Consequently, m

X
Cl(R) = m

X
Cl(m

X
Cl(m

X
Int(R))). 

Thus m
X
Int(m

X
Cl(R)) = m

X
Int(m

X
Cl(m

X
Int(R))). Hence 

m
X
Int(m

X
Cl(R)) = m

X
Int(R). Therefore, R is an m

X
- -set. 

-sets in biminimal structure space

	 In this section, we introduce the concept of 

-sets in biminimal structure spaces and study some	

fundamental properties of -sets in biminimal structure 

spaces and investigate some of their properties.

Definition 3.2.1 A subset A of a biminimal structure space 

(X, m
X
1, m

X
2) is said to be (i, j)m

X
-locally closed if there 

exist G and F such that A = G∩F when G is an m
X
i-open 

set G and F is an m
X
j-closed set, where i, j = 1 or 2 and 

i j.

	 The family of all (i, j)m
X
-locally closed sets in 

biminimal structure spaces (X, m
X
1, m

X
2) is denoted by (i, 

j)m
X
- (X, m

X
1, m

X
2), where i, j = 1 or 2 and i j.
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Example 3.2.2 Let X = {a, b, c}. Define m-structures m
X
1 

and m
X
2 on X as follows : m

X
1 = {Ø, {b, c}, X} and m

X
2 = 

{Ø, {c}, X}. Thus (1, 2)- (X, m
X
1, m

X
2) = {Ø, {b}, {b, c}, 

{a, b}, X}. 

Lemma 3.2.3 Let S be a subset of a biminimal stucture 

space (X, m
X
1, m

X
2) and let i, j = 1 or 2 and i j. If S is an 

(i, j)m
X
-locally closed set then there exists an m

X
i-open 

set U such that S = U∩m
X
jCl(S)

Proof. Let S be an (i, j)m
X
-locally closed set. Then there 

exist U and F such that S = U ∩ F where U is m
X
i-open 

and F is m
X
j-closed. Since S = U ∩ F, S ⊆ F. Thus 

m
X
jCl(S) ⊆ m

X
jCl(F). Since F is m

X
j-closed, m

X
jCl(S) ⊆ 

F. Then U ∩ m
X
jCl(S) ⊆ U ∩ F = S. Since S ⊆ U and 

S ⊆ m
X
jCl(S). Then S ⊆ U ∩ m

X
jCl(S). Therefore, there 

exists an m
X
i-open set U such that S = U ∩ m

X
jCl(S). 

	 The converse of Lemma 3.2.3 is true if m
X
j has 

property  as a following proposition.

Proposition 3.2.4. Let S be a subset of a biminimal 

stucture space (X, m
X
1, m

X
2) and let m

X
j has property , 

where i, j = 1 or 2 and i j. Then S is an (i, j)m
X
-locally 

closed set iff there exists an m
X
i-open set U such that S 

= U ∩ m
X
jCl(S). 

Proof. (⇒) By Lemma 3.2.3. 

 (⇐) Let S = U ∩ m
X
jCl(S), for some U ∈ m

X
i. Since 

m
X
j has property , m

X
jCl(S) is closed in (X, m

X
j). Thus S 

is an (i, j)m
X
-locally closed.	

Definition 3.2.5. Let (X, m
X
1, m

X
2) be a biminimal structure 

space. A subset M of X is said to be an (i, j)m
X
- -set if 

there exist G and R, such that M = G∩R when G ∈ m
X
i 

and R is m
X
j-regular closed, where i, j = 1 or 2 and i j. 

	 The family of all (i, j)m
X
- -sets in a biminimal 

structure space (X, m
X
1, m

X
2) is denoted by (i, j)- (X, m

X
1, 

m
X
2) where i, j = 1 or 2 and i j. 

Example 3.2.6. Let X = {1, 2, 3}. Define m-structures m
X
1 

and m
X
2 on X as follows : m

X
1 = {Ø, {1, 2}, {1, 3}, X} and 

m
X
2 = {Ø, {2}, {1, 2}, X} which are m-structures on X. It 

follows that RC(X, m
X
2) = {Ø, X}. Thus (1, 2) (X, m

X
1, 

m
X
2) = {Ø, {1, 2}, {1, 3}, X}.

Lemma 3.2.7. Let (X, m
X
1, m

X
2) be a biminimal structure 

space m
X
j has property . If a subset M of X is an (i, j)

m
X
- -set, then M is (i, j)m

X
-locally closed, where i, j = 1 

or 2 and i j. 

Proof. Let M is an (i, j)m
X
- -set. Then there exist G and 

R such that M = G∩R where G ∈ m
X
i-open and R is 

m
X
j-regular closed. Since R is m

X
j-regular closed, R = 

m
X
jCl(m

X
jInt(R)). But m

X
j has property , then m

X
jCl(m

X
jInt(R))	

is closed. Hence R is m
X
j-closed. It follows that M is an 

(i, j)m
X
-locally closed.	

Proposition 3.2.8 Let (X, m
X
1, m

X
2) be a biminimal structure	

space and m
X
j ⊆ m

X
i has the property . If a subset M 

of X is both (i, j)m
X
-semi-open and (i, j)m

X
-locally closed, 

then M is an (i, j)m
X
- -sets, where i, j = 1 or 2 and i j. 

Proof. Let M be both (i, j)m
X
-semi-open and (i, j)m

X
-lo-

cally closed. It follows that M ⊆ m
X
jCl(m

X
jInt(M)) such 

that M = U ∩ m
X
jCl(M). Since m

X
jCl(M) ⊆ m

X
jCl(m

X
jInt(M)). 

But m
X

jCl(m
X

jInt(M)) ⊆ m
X

jCl(M), hence m
X

jCl(M) = 

m
X
jCl(m

X
jInt(M)) and m

X
jCl(m

X
jInt(M)) is m

X
j-regular closed. 

Consequently m
X
jCl(M) is m

X
j-regular closed. Therefore, 

M is an (i, j)m
X
- -set.	

Definition 3.2.9 Let (X, m
X
1, m

X
2) be a biminimal structure 

space and A ⊆ X. Then A is said to be an (i, j)m
X
- -set 

if m
X
iInt(A)) = m

X
iInt(m

X
jCl(A)), where i, j = 1 or 2 and i j. 

	 The family of all (i, j)m
X
- -sets in a biminimal 

structure spaces (X, m
X
1, m

X
2) is denoted by (i, j)- (X, m

X
1, 

m
X
2) for i, j = 1 or 2 and i j. 

Example 3.2.10 Let X = {1, 2, 3}. Define m-structures m
X
1 

and m
X
2 on X as follows : m

X
1 = {Ø, {1}, {3}, {2, 3}, X} and 

m
X
2 = {Ø, {1}, {1, 2}, X}. 

Thus (1, 2)- (X, m
X
1, m

X
2) = {Ø, {3}, {2, 3}, X}. 

Theorem 3.2.11 Let (X, m
X
1, m

X
2) be a biminimal structure 

space and A ⊆ X. Then A is an (i, j)m
X
- -set if and only 

if A is an (i, j)m
X
-semi-closed, where i, j = 1 or 2 and i j. 

Proof. (⇒) Let A be an (i, j)m
X
- -set. Then m

X
iInt(A)) = 

m
X
iInt(m

X
jCl(A)). Thus m

X
iInt(m

X
jCl(A)) ⊆ A. Hence A is 

an (i, j)m
X
-semi-closed.

(⇐) Let A be an (i, j)m
X
-semi-closed. Then m

X
iInt(m

X
jCl(A)) 

⊆ A. Thus m
X
iInt(m

X
iInt(m

X
jCl(A))) ⊆ m

X
iInt(A). Hence 

m
X

iInt(m
X

jCl(A)) ⊆ m
X

iInt(A). Since m
X

iInt(A) ⊆ 
m

X
iInt(m

X
jCl(A)). Thus m

X
iInt(A) = m

X
iInt(m

X
jCl(A)). Hence 

A is an (i, j)m
X
- -set.

Definition 3.2.12 Let (X, m
X
1, m

X
2) be a biminimal structure 

space and A ⊆ X. Then A is said to be an

(i, j)m
X
- -set if A = U∩T, when U is an m

X
i-open set and 

T is an m
X
j- -set, where i, j = 1 or 2 and i j. 
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	 The family of all (i, j)m
X
- -sets in a biminimal 

structure space (X, m
X
1, m

X
2) is denoted by (i, j)- (X, m

X
1, 

m
X
2), where i, j = 1 or 2 and i j. 

Example 3.2.13 Let X = {1, 2, 3}. Define m-structures m
X
1 

and m
X
2 on X as follows : m

X
1 = {Ø, {1}, {2}, {2, 3}, X} and 

m
X
2 = {Ø, {1}, {3}, {2, 3}, X}. Then {Ø, {1}, {2}, {1, 2}, {2, 

3}, X} are m
X
2- -sets. Therefore, (1, 2)- (X, m

X
1, m

X
2) = 

{Ø, {1}, {2}, {1, 2}, {2, 3}, X}.

Theorem 3.2.14 Let (X, m
X
1, m

X
2) be a biminimal structure 

space and A ⊆ X. If A is an (i, j)m
X
- -set, then A is an 

(i, j)m
X
- -set for all i, j = 1 or 2 and i j. 

Proof. Let A be an (i, j)m
X
- -set. Then there exist G and 

R such that A =G∩R where G is m
X
i-open in (X, m

X
i) and 

R is an m
X
j-regular closed. By Proposition 3.1.5, R is an 

m
X
j- -set. Hence A is an (i, j)m

X
- -set. 

Proposition 3.2.15 Let (X, m
X

1, m
X

2) be a biminimal 

structure space and M be a subset of X. If M is an (i, j)

m
X
-locally closed set, then it is also an (i, j)m

X
- -set, 

where i, j = 1 or 2 and i j. 

Proof. Let M be (i, j)m
X
-locally closed set. Then there 

exist U and B such that M =U∩B where U is m
X
i-open 

and B is m
X
j-closed. Since B is m

X
j- closed, B = m

X
jCl(B). 

Thus m
X
jInt(B) = m

X
jInt(m

X
jCl(B)). Hence B is an m

X
j- -set. 

Thus M is an (i, j)m
X
- -set.	

Definition 3.2.16 Let (X, m
X
1, m

X
2) be a biminimal structure 

space and A ⊆ X. Then A is said to be an (i, j)m
X
- -set 

if A =U∩B, when U is an m
X
i-open and B is m

X
j-preclosed, 

where i, j = 1 or 2 and i j. 

	 The family of all (i, j)m
X
- -sets in a biminimal 

structure space (X, m
X
1, m

X
2) is denoted by (i, j)-  (X, m

X
1, 

m
X
2), where i, j = 1 or 2 and i j. 

Example 3.2.17 Let X = {1, 2, 3}. Define m-structures m
X
1 

and m
X
2 on X as follows : m

X
1 = {Ø, {1}, {2}, {2, 3}, X} and 

m
X
2 = {Ø, {1}, {3}, {2, 3}, X}. Thus Ø, {1}, {2}, {1, 2}, {2, 

3}, X are preclosed in (X, m
X
2). Therefore, (1, 2)- (X, m

X
1, 

m
X
2) ={Ø, {1}, {2}, {1, 2}, {2, 3}, X}. 

Theorem 3.2.18. Let (X, m
X
1, m

X
2) be a biminimal structure 

space and A ⊆ X. If A is an (i, j)m
X
- -set, then A is an 

(i, j)m
X
- -set for all i, j = 1 or 2 and i j. 

Proof Let A be an (i, j)m
X
- -set. Then there exist G and 

R such that A =G∩R where G is m
X
i-open and R is an 

m
X

j- regular closed. Since R = m
X

jCl(m
X

jInt(R)), thus 

m
X

jCl(m
X

jInt(R)) ⊆ R. Hence R is an m
X

j-preclosed. 

Therefore, A is an (i, j)m
X
- -set.

Proposition 3.2.19 Let (X, m
X

1, m
X

2) be a biminimal 

structure space and M be a subset of X. If M is an (i, j)

m
X
-locally closed set, then it is also an (i, j)m

X
- -set, 

where i, j = 1 or 2 and i j.

Proof. Let M be an (i, j)m
X
-locally closed set. Then there 

exist U and B such that M = U∩B where U is m
X
i-open 

in (X, m
X
i) and B is m

X
j-closed. 

It follows that m
X
jCl(m

X
jInt(B)) ⊆ m

X
jCl(B) = B. Then B is 

an m
X
j-preclosed. Hence M is an (i, j)m

X
- -set.

Proposition 3.2.20 Let A be a subset of a biminimal 

stucture space (X, m
X
1, m

X
2) and m

X
j has the property 

. Then A is an (i, j)m
X
- -set iff A = U∩m

X
jpcl(A) for some 

U ∈ m
X
i, where i, j = 1 or 2 and i j. 

Proof. 	 (⇒) Let A be (i, j)m
X
- -set. Then there exist U 

and B such that A =U∩B where U is m
X
i-open and B is 

m
X
j-preclosed. From A ⊆ B, m

X
jpcl(A) ⊆ m

X
jpcl(B) by 

Proposition 2.11, m
X
jpcl(B) = B ∪ m

X
jCl(m

X
jInt(B)). As B 

is m
X
j-preclosed, m

X
jCl(m

X
jInt(B)) ⊆ B. Hence m

X
jpcl(B) 

= B. Thus m
X
jpcl(A) ⊆ B. Therefore A = U∩m

X
jpcl(A).

	 (⇐) Let A = U∩m
X
jpcl(A) for some U ∈ m

X
i. 

Since m
X
jpcl(A) is an m

X
j-preclosed. Therefore, A is an (i, 

j)m
X
- -set.

Proposition 3.2.21 Let A be a subset of a biminimal 

stucture space (X, m
X
1, m

X
2) and m

X
j has the property 

. Then A = U ∩ m
X
jCl(m

X
jInt(A)) for some U ∈ m

X
i if and 

only if A is an m
X
j-semi-open and (i, j)m

X
- -set, where i, 

j = 1 or 2 and i j. 

Proof. (⇒) Let A = U ∩ m
X
jCl(m

X
jInt(A)) for some U ∈ 

m
X
i. Then A ⊆ m

X
jCl(m

X
jInt(A)). Thus A is an m

X
j-semi-

open. By Lemma 2.6, m
X
jCl(m

X
jInt(A)) is m

X
j-closed. Since 

m
X

jInt(m
X

jCl(m
X

jInt(A))) ⊆ m
X

jCl(m
X

jInt(A)), m
X

jCl 

(m
X

jInt(m
X

jCl(m
X

jInt(A)))) ⊆ m
X

jCl(m
X

jInt(A)). Hence 

m
X
jCl(m

X
jInt(A)) is m

X
j-preclosed. Then A is an (i, j)m

X
-

-set.

(⇐) Let A be an m
X
j-semi-open and 

(i, j)m
X
- -set. By Proposition 3.2.20, A = U∩m

X
jpcl(A) for 

some U ∈ m
X
i. Since A is m

X
j-semi-open. Then A ⊆ 

m
X
jCl(m

X
jInt(A)). Since m

X
j has the property  and by 

Proposition 2.11, m
X
jpcl(A) = A ∪ m

X
jCl(m

X
jInt(A)). Thus 

m
X
jpcl(A) = m

X
jCl(m

X
jInt(A)). Hence A = U∩m

X
jCl(m

X
jInt(A)) 
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for some U ∈ m
X
i. 

Theorem 3.2.22 Let A be a subset of a biminimal stucture 

space (X, m
X
1, m

X
2) and m

X
j has the property . If a 

subset M of X is an m
X
j-semi-open and (i, j)m

X
- -set, then 

it is an (i, j)m
X
- -set.

Proof. Let M be an m
X
j-semi-open and ((i, j)m

X
 - -set. By 

Proposition 3.2.21, then M = U ∩ m
X
jCl(m

X
jInt(M)), for 

some U ∈ m
X

i. Since m
X

jCl(m
X

jInt(M)) is m
X

j-regular 

closed. Therefore, M is an (i, j)m
X
- -set.

Definition 3.2.23 Let (X, m
X
1, m

X
2) and 

(Y, m
Y
1, m

Y
2) be biminimal structure spaces. 

A function f : (X, m
X
1, m

X
2) → (Y, m

Y
1, m

Y
2) is said to be

	 (1)	 (i, j)-semi-continuous if f – 1(V) ∈ (i, j)-SO(X,  

		  m
X
1, m

X
2) for all V ∈ m

Y
i. 

	 (1)	 (i, j)- -continuous if f – 1(V) ∈ (i, j)- (X, 	

		  m
X
1, m

X
2) for all V ∈ m

Y
i. 

	 (1)	 (i, j)- -continuous if f – 1(V) ∈ (i, j)- (X, 	

		  m
X
1, m

X
2) for all V ∈ m

Y
i. 

	 (1)	 (i, j)- -continuous if f – 1(V) ∈ (i, j)-

	 	 (X, m
X
1, m

X
2) for all V ∈ m

Y
i. 

Proposition 3.2.24 Let (X, m
X
1, m

X
2) and 

(Y, m
Y
1, m

Y
2) be biminimal structure spaces. A function 	

f : (X, m
X
1, m

X
2) → (Y, m

Y
1, m

Y
2) be a mapping. If f is 	

(i, j)- -continuous then f is (i, j)- -continuous.

Proof. Let f be (i, j)- -continuous and V ∈ m
Y
i. Then f 

– 1(V) ∈ (i, j)- (X, m
X
1, m

X
2). By Lemma 3.2.7, we have 

f – 1(V) ∈ (i, j)- (X, m
X
1, m

X
2). Hence f is (i, j)- -con-

tinuous.

Theorem 3.2.25 Let (X, m
X
1, m

X
2) and (Y, m

Y
1, m

Y
2) be 

biminimal structure spaces and m
X
j has the property . 

If a mapping f : (X, m
X
1, m

X
2) → 

(Y, m
Y
1, m

Y
2) is (i, j)-semi-continuous and (i, j)- -con-

tinuous then f is (i, j)- -continuous.

Proof. Let f be an (i, j)-semi-continuous and (i, j)-

-continuous and V ∈ m
Y
i. Then f – 1(V) ∈ (i, j)-SO(X, m

X
1, 

m
X
2) and f – 1(V) ∈ (i, j)- (X, m

X
1, m

X
2). By Proposition 

3.2.8, thus f – 1(V) ∈ (i, j)- (X, m
X
1, m

X
2). Therefore, f is 

(i, j)- -continuous.

Theorem 3.2.26 Let (X, m
X
1, m

X
2) and (Y, m

Y
1, m

Y
2) be 

biminimal structure spaces. If a mapping 

 f : (X, m
X
1, m

X
2) → (Y, m

Y
1, m

Y
2) is (i, j)-semi-continuous 

and (i, j)- -continuous then f is (i, j)- -continuous.

Proof. Let f be an (i, j)-semi-continuous and (i, j)- -con-

tinuous and V ∈ m
Y
i. Then f – 1(V) ∈ (i, j)-SO(X, m

X
1, 

m
X
2) and f – 1(V) ∈ (i, j)- (X, m

X
1, m

X
2). By Theorem 

3.2.22, thus f – 1(V) ∈ (i, j)- (X, m
X
1, m

X
2). Therefore, f 

is (i, j)- -continuous.

Conclusion
	 In this paper, we introduced the concept of 

-sets in biminimal structure spaces. We also studied some 

properties of -sets and -continuous function on the 

space. The following implications hold for a biminimal 

structure spaces. These implications are not reversible.

 

 
 

Theorem 3.2.25. Let (X, mX
1, mX

2) and (Y, mY
1, mY

2) 
be biminimal structure spaces and mX

j has the 
property 𝔅𝔅. If a mapping f : (X, mX

1, mX
2) →  

(Y, mY
1, mY

2) is (i, j)-semi-continuous and (i, j)-ℒ𝒞𝒞-
continuous then f  is (i, j)-𝒜𝒜-continuous. 
Proof.  Let f be an (i, j)-semi-continuous and (i, j)-
ℒ𝒞𝒞-continuous and V ∈ mY

i. Then f – 1(V) ∈ (i, j)-
SO(X, mX

1, mX
2) and f – 1(V) ∈ (i, j)-ℒ𝒞𝒞(X, mX

1, mX
2). 

By Proposition 3.2.8, thus f – 1(V) ∈ (i, j)-𝒜𝒜(X, mX
1, 

mX
2). Therefore, f is (i, j)-𝒜𝒜-continuous. 

Theorem 3.2.26. Let (X, mX
1, mX

2) and (Y, mY
1, mY

2) 
be biminimal structure spaces. If a mapping  
 f : (X, mX

1, mX
2) → (Y, mY

1, mY
2) is (i, j)-semi-

continuous and (i, j)-𝒞𝒞-continuous then f is (i, j)-𝒜𝒜-
continuous. 
Proof. Let f be an (i, j)-semi-continuous and (i, j)-𝒞𝒞-
continuous and V ∈ mY

i. Then f – 1(V) ∈ (i, j)-SO(X, 
mX

1, mX
2) and f – 1(V) ∈ (i, j)-𝒞𝒞(X, mX

1, mX
2). By 

Theorem 3.2.22, thus f – 1(V) ∈ (i, j)-𝒜𝒜(X, mX
1, mX

2). 
Therefore, f is (i, j)-𝒜𝒜-continuous. 
 
4. Conclusion 
 In this paper, we introduced the concept of 
𝒜𝒜-sets in biminimal structure spaces. We also 
studied some properties of 𝒜𝒜-sets and 𝒜𝒜-
continuous function on the space. The following 
implications hold for a biminimal structure spaces. 
These implications are not reversible.  
an (i, j)mX-𝒜𝒜-set    an (i, j)mX-ℬ-set 
                             
   
an (i, j)mX-ℒ𝒞𝒞-set   an (i, j)mX-𝒞𝒞-set 
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