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บทคัดยอ
เปนที่ทราบกันดีวาอัตราสวนของพจนที่ติดกันของจํานวนฟโบนักชี  และอัตราสวนของพจนท่ีติดกันของจํานวนลูคัส 

 ลูเขาสูอัตราสวนทองคํา งานวิจัยนี้ศึกษาลําดับยอย  เมื่อ  เปนจํานวนเต็มบวก โดยไดแสดงวาลิมิตของ

อตัราสวนระหวาง  และ  ลูเขากต็อเมือ่  โดยทาํการพสิจูนลาํดับท่ีเกดิจากความสมัพนัธเวยีนเกดิอันดบัสอง

ในรูปทั่วไปที่ครอบคลุมลําดับฟโบนักชี นอกจากนี้ยังไดใหคาของลิมิตที่เกิดขึ้น

คําสําคัญ: ลําดับฟโบนักชี อัตราสวน การลูเขา ความสัมพันธเวียนเกิด ลําดับยอยที่มีดัชนีเปนเลขชี้กําลังเปน n

Abstract
It is well known that the ratios of the consecutive terms of the Fibonacci numbers  and those of the Lucas 

numbers  converge to the golden ratio. In this work, we study the -exponential subsequence  , where 

n  is a positive integer. We show that the limit of the quotient between  and  converges if and only if 

 by proving a more general statement for the sequences satisfying a recurrence relation of order 2 that covers 

the Fibonacci sequence. We also give the limit of the convergence if it exists.

Keyword: Fibonacci sequence, Quotient, Convergence, Recurrence relation, n -exponential subsequence
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Introduction  

The Fibonacci sequence   0m mF 


is defined by 

the recurrence relation 

1 2m m mF F F    , for 2,m           1  

where 0 = 0F  and 1= 1.F  In 2015, Craciun [1] 

defined a geometrical generalization of the golden 

ratio by considering a ratio between two sub-

segments and its relation to a homogeneous 

function M  defined by  

: (0, ) (0, ) (0, )M       

satisfying  

i. ( , )x M x y y  , for all 0 x y   

and  

ii. ( , ) ( , ),M x y M x y     for 

all , , (0, )x y   . 

The Fibonacci numbers have been generalized in 

many ways, one of which is the k  Fibonacci 

numbers [2] defined by, for a non-zero integer ,k  

, , 1 , 2    ,  k m k m k mF kF F   for    2,m   

where ,0  = 0kF  and ,1= 1.kF  It is well known 
that the ratio of consecutive Fibonacci numbers 

converges to the golden ratio  1 5 .
2

   If 

we consider the n -exponential subsequence  

  1nm m
F




 of the Fibonacci sequence, it is obvious 

that the ratio of consecutive terms goes to infinity. 

We will study a more generalized form of 
the Fibonacci and k  Fibonacci numbers. For a 

non-zero real number ,k  we let   0m ma 


  be a 

sequence generated by a recurrence relation 

1 2   ,m m ma ka a    for 2m          (2)   
where 0a s  and 1 .a t  We assume that 

0,nma   for all ,  1.m n    
The followings are examples of the sequences 
satisfying (2): 

 if 1,  0,  1,k s t    then na  is the 
Fibonacci number ,nF   

 if 1,  2,  1,k s t    then na  is the 
Lucas number ,nL   

 if 2,  0,  1,k s t    then na  is the 
Pell number ,nP   

 if 2,  2,  2,k s t    then na  is the 
Pell-Lucas number nQ . 

In this paper, we are interested in the growth 

rate of such ratios which is the quotient of  1 n

n

m

m

a

a
  

and 
 1

n

n

m

m

a
a



. It has been shown that if k  is a 

positive integer, then [3, 4] 

            ,

,

lim      ,k m p p
km

k m

F
F




        3   

where p  is a positive integer and 
2 4  .

2k
k k    By (3), it can be verified 

that the limit of the quotient of  , 1

,

n

n

k m

k m

F

F
  and 

 

,

, 1

n

n

k m

k m

F
F



 converges if and only if   2,n   and 

that if   2,n   then the limit converges to 2
k . 

Considering a more generalized sequence 

 is defined by the 

recurrence relation
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