ปริภูมิเชิงทอพอโลยีแบบเรียบสามัญวางนัยทั่วไป

Generalized Ordinary Smooth Topological Spaces

ศศิกานต์ พิมพา¹, ดรุณี บุญชารี², จีระนันท์ คำภักดี², กิตติศักดิ์ แสงสุระ^{2*} Sasikarn Pimpa¹, Daruni Boonchari², Jeeranunt Khampakdee², Kittisak Saengsura^{2*} Received: 4 August 2017 ; Accepted: 28 November 2017

บทคัดย่อ

ในบทความนี้ เราได้แนะนำการวางนัยทั่วไปสำหรับปริภูมิเซิงทอพอโลยีแบบเรียบสามัญ ซึ่งเราเรียกว่าปริภูมิเซิงทอพอโลยีแบบ เรียบสามัญวางนัยทั่วไป และศึกษาสมบัติบางประการบนปริภูมิเซิงทอพอโลยีแบบเรียบสามัญวางนัยทั่วไป เช่น ตัวดำเนินการ ปิดคลุม ตัวดำเนินการภายในและความต่อเนื่องของฟังก์ชันบนปริภูมิดังกล่าว

คำสำคัญ: ปริภูมิเชิงทอพอโลยีวางนัยทั่วไป ปริภูมิเชิงทอพอโลยีแบบเรียบสามัญ ปริภูมิเชิงทอพอโลยีแบบเรียบสามัญวางนัย ทั่วไป

Abstract

In this paper, we introduce the concept of generalization for ordinary smooth topological space which we call a generalized ordinary smooth topological space and we also study some properties of such space, for instance, closure operator, interior operator and continuity.

Keywords: Generalized topological spaces, Ordinary smooth topological spaces, Generalized ordinary smooth topological spaces.

Introduction and Preliminaries

The concepts of a generalized topology on X was first introduced by Csa'sza'r in as a subset μ of P(X) with the properties¹:

1. $\emptyset \in \mu$,

2. $\bigcup_{i \in I} \mu_i \in \mu$ for all $\mu_i \in \mu$ and $i \in I \neq \emptyset$.

The pair (X, μ) is called a generalized topological space and μ is called a generalized topology (briefly *GT*).

In the paper introduced the concepts of ordinary smooth topology on X as a mapping $\tau: 2^X \to I$ with the properties²:

$$\begin{split} \tau(X) &= \ \tau(\emptyset) = 1, \\ \tau(A \cap B) &\geq \ \tau(A) \land \ \tau(B) \text{ for all } A, B \in 2^X, \\ \tau(\bigcup_{\alpha \in \Gamma} A_\alpha) &\geq \ \wedge_{\alpha \in \Gamma} \tau(A_\alpha) \text{ for all } \{A_\alpha\} \subseteq 2^X, \end{split}$$

where 2^X is the powerset of X and I is a closed interval [0,1].

The pair (X, τ) is called an ordinary smooth topological space (briefly, *osts*).

In the paper defined an ordinary smooth closure and an ordinary smooth interior in (X, τ) and gave the characterizations of ordinary smooth closure and ordinary smooth interior².

¹ นิสิตปริญญาโท, ²ผู้ช่วยศาสตราจารย์, ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม อาเภอกันทรวิชัย จังหวัดมหาสารคาม 44150 ประเทศไทย

¹ Master' degree student, ²Assistant Professor, Department of Mathematics, Faculty of Science, Mahasarakham University, Kuntarawichai District, Maha Sarakham 44150, Thailand.

^{*} Corresponding author. Kittisak Saengsura, Centre of Excellence in Mathematics, CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand. Kittisak.s@msu.ac.th

In this paper, we define the space which generalizes the generalized topology on X, we call a generalized ordinary smooth topological space and we also study some properties on such space and continuous maps between the ordinary smooth topological spaces.

Results

In this section, we define a generalized ordinary smooth topological space and give an analogue of generalized ordinary smooth topological space as the result.

Definition 1.1. Let X be a nonempty set. Then a mapping $\mu: 2^X \to I$ is called a generalized ordinary smooth topology (briefly *gost*) on X if μ satisfies the following axioms:

 $\mu(\emptyset) = 1$

$$\mu(\bigcup_{\alpha \in \Gamma} A_{\alpha}) \ge \bigwedge_{\alpha \in \Gamma} \mu(A_{\alpha}) \text{ for all } \{A_{\alpha}\} \subseteq 2^{X}$$

where 2^{X} is the powerset of X and I is a closed interval [0,1].

The pair (X, μ) is called a generalized ordinary smooth topological space (briefly *gosts*). We will denote the set of all *gosts* on X by *GOST*(X).

Example 1.2. Let $X = \{a, b, c\}$. We define the mapping $\mu: 2^X \to I$ as follows: Let $A \in 2^X$, $\begin{cases}
1, & \text{if } A = \emptyset; \\
0.8, & \text{if } A = X \text{ or } A = \{b, c\};
\end{cases}$

$$\mu(A) = \begin{cases} 0.0, & if \ A = A \text{ of } A = \{0, 0\}, \\ 0.6, & \text{if } A = \{a\}; \\ 0.5, & \text{if } A = \{b\} \text{ or } \{a, b\}; \\ 0.4, & \text{if } A = \{c\} \text{ or } \{a, c\}. \end{cases}$$

Then $\mu \in GOST(X)$.

The operators on X which is induced by the generalized ordinary topologies μ are defined as follows:

Definition 1.3. Let (X, μ) be a *gosts* and let $A \in 2^X$. Then the generalized ordinary smooth closure and generalized ordinary smooth interior of A in X are defined by

$$\overline{A} = \bigcap \{F \in 2^X : A \subseteq F \text{ and } \mu(F^c) > 0\},\$$
and
$$A^\circ = \bigcup \{U \in 2^X : U \subseteq A \text{ and } \mu(U) > 0\},\$$
respectively.

Example 1.4. From Example 1.2 and let $A = \{a, c\}$. Then

$$A^{\circ} = \bigcup \{ U \in 2^{X} : U \subseteq \{a, c\} \text{ and } \mu(U) > 0 \}$$

= $\bigcup \{ \emptyset, \{a\}, \{c\}, \{a, c\} \}$
= $\{a, c\}$

and

$$\overline{A} = \bigcap \{F \in 2^X : \{a, c\} \subseteq F \text{ and } \mu(F^c) > 0\}$$

$$= \bigcap \{X, \{a, c\}\}$$

$$= \{a, c\}.$$

The following propositions are the properties of *gosts*

Proposition 1.5. Let (X, τ) be a *gosts* and let

$$A, B \in 2^X$$
. Then:

If
$$A \subseteq B$$
, then $A^{\circ} \subseteq B^{\circ}$ and $\overline{A} \subseteq \overline{B}$.
 $(A^{\circ})^{c} = \overline{A^{c}}$.
 $A^{\circ} = (\overline{A^{c}})^{c}$.
 $\overline{A} = ((A^{\circ})^{c})^{c}$.
 $(\overline{A})^{c} = (A^{c})^{\circ}$.

Proof. (1) Obvious.

(2) For any $A \in 2^X$, we have that $(A^\circ)^c = (\bigcup \{U \in 2^X : U \subseteq A \text{ and } \mu(U) > 0\})^c = \bigcap \{U^c \in 2^X : A^c \subseteq U^c \text{ and } \mu(U^c) > 0\} = \overline{A^c}$

The proof of (3), (4) and (5) are easily obtained from (2).

Proposition 1.6. Let (X, τ) be a *gosts* and let $A, B \in 2^X$. Then:

$$A^{\circ} \subseteq A.$$

$$(A^{\circ})^{\circ} = A^{\circ}.$$

$$(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}.$$
Proof. (1) Obvious.

(2) For each $A \in 2^X$, using (1), we have that

$$(A^\circ)^\circ \subseteq A^\circ$$
. Since

 $(A^{\circ})^{\circ} = \bigcup \{ U \in 2^{X} : \mu(U) > 0 \text{ and } U \subseteq A^{\circ} \} = \bigcup \{ U \in 2^{X} : \mu(U) > 0 \text{ and } U \subseteq \bigcup \{ W \in 2^{X} : \mu(W) > 0 \text{ and } W \subseteq A \} \} \supseteq \bigcup \{ U \in 2^{X} : \mu(U) > 0 \text{ and } U \subseteq A \} = A^{\circ}$

then $(A^\circ)^\circ = A^\circ$.

(c) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, $(A \cap B)^{\circ} \subseteq A^{\circ}$ and $(A \cap B)^{\circ} \subseteq B^{\circ}$. Thus $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$.

Proposition 1.7. Let (X, τ) be a *gosts* and let

$$A, B \in 2^X$$
. Then:
 $A \subseteq \overline{A}$
 $\overline{(\overline{A})} = \overline{A}$
 $\overline{\overline{A} \cup \overline{B}} \subseteq \overline{A \cup B}$

Proof. The proofs are similar to that of Proposi-

tion 1.6.

J Sci Technol MSU

Definition 1.8. Let (X, μ) be a *gosts*, $r \in I$ and

 $A \in 2^X$. Then we define $\overline{A_r}$ and A_r° by

$$A_r = \bigcap \{F \in 2^X : A \subseteq F \text{ and } \mu(F^c) \ge r\}$$

and
$$A^\circ = \bigcup \{U \in 2^X : U \subseteq A \text{ and } \mu(U) \ge r\}$$

 $A_r^\circ = \bigcup \{ U \in 2^X : U \subseteq A \text{ and } \mu(U) \ge r \},\$

respectively.

We called A_r a generalized ordinary smooth rravel closure and A_r° a generalized ordinary smooth rravel interior.

Then the following results are obtained:

Proposition 1.9. Let (X, τ) be a *gosts* and let $A \in 2^X$. Then:

If $\mu(A) > 0$, then $A = A^{\circ}$. If $\mu(A^{\circ}) > 0$, then $A = \overline{A}$. If there is $r \in I_0$ such that $A = \overline{A_r}$, then $A = \overline{A}$. If there is $r \in I_0$ such that $A = A_r^{\circ}$, then $A = A^{\circ}$. **Proof.** (1) Let $\mu(A) > 0$. Then $A \in \{U \in 2^X : U \subseteq A \text{ and } \mu(U) > 0\}$, so $A \subseteq \bigcup \{U \in 2^X : U \subseteq A \text{ and } \mu(U) > 0\}$, thus $A \subseteq A^{\circ}$. Therefore $A = A^{\circ}$. (2) Let $\mu(A^{\circ}) > 0$. Then $A^{\circ} = (A^{\circ})^{\circ}$, so $(A^{\circ})^{\circ} = ((A^{\circ})^{\circ})^{\circ}$. Thus $A = \overline{A}$.

(3) Assume that $r \in I_0$ such that $A = \overline{A_r}$. Since $\overline{A} = \bigcap \{F \in 2^X : A \subseteq F \text{ and } \mu(F^c) > 0\} \subseteq \bigcap \{F \in 2^X : A \subseteq F \text{ and } \mu(F^c) \ge r\} = \overline{A_r} = A$, $\overline{A} \subseteq A$. So $A = \overline{A}$.

(4) Assume that $r \in I_0$ such that $A = A_r^\circ$. Since $\mu(A_r^\circ) = \mu(\bigcup\{V \in 2^X : \mu(U) \ge r \text{ and } V \subseteq A\}) \ge \wedge \mu(\bigcup\{V \in 2^X : \mu(U) \ge r \text{ and } V \subseteq A\}) \ge r > 0$, $\mu(A_r^\circ) > 0$. So $A_r^\circ \in \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A_r^\circ\} \subseteq$

 $\bigcup \{ U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A \} = A^\circ .$

Thus $A = A_r^{\circ} \subseteq A^{\circ} \subseteq A$. Therefore $A = A^{\circ}$.

2. Generalized ordinary smooth continuity

In this section, we defined a continuous mapping on generalized ordinary smooth topological spaces as follows:

Definition 2.1 Let (X, μ_1) and (Y, μ_2) be *gosts's*. Then a mapping $f: X \to Y$ is said to be:

A generalized ordinary smooth continuous (briefly gos - continuous) if $\mu_2(A) \le \mu_1(f^{-1}(A))$ for all $A \in 2^Y$. A generalized ordinary weakly smooth continuous (briefly *gows - continuous*) if for each $A \in 2^{Y}$, $\mu_{2}(A) > 0 \Rightarrow \mu_{1}(f^{-1}(A)) > 0$.

Example 2.2. Let $X = \{a, b, c\}$. We define two mapping as follows: For each $C, D \in 2^X$,

$$\mu_{1}(C) = \begin{cases} 1, & \text{if } C = \emptyset; \\ \frac{1}{2}, & \text{if } C = X \text{ or } C = \{b, c\} \text{ or } C = \{a\}; \\ 0, & \text{otherwise}, \end{cases}$$
$$\mu_{2}(D) = \begin{cases} 1, & \text{if } D = \emptyset; \\ \frac{1}{2}, & \text{if } D = X \text{ or } D = \{b, c\} \text{ or } D = \{a\}; \\ 0, & \text{otherwise}, \end{cases}$$

and

Cleary, the identity mapping $id: (X, \mu_2) \rightarrow (X, \mu_1)$ is gows - continuous, but id is not gos - continuous. The following results are obtained that:

Corollary 2.3. Let (X, μ_1) and (Y, μ_2) be *gosts's*

and let a mapping $f: X \to Y$. Then: f is gos - continuousiff $\mu_2(A^c) \le \mu_1(f^{-1}(A^c))$ for all $A \in 2^Y$. f is gows - continuous iff $\mu_2(A^c) > 0 \Rightarrow \mu_1(f^{-1}(A^c)) > 0$ for all $A \in 2^Y$.

> **Proposition 2.4.** Let (X, μ_1) and (Y, μ_2) be gosts's and let a mapping $f: X \to Y$ be gows - continuous. Then: $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \in 2^X$. $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$ for all $B \in 2^Y$. $f^{-1}(B^\circ) \subseteq (f^{-1}(B))^\circ$ for all $B \in 2^Y$. **Proof.** (1) Let $A \in 2^X$. Since $f^{-1}(\overline{f(A)}) = f^{-1}(\bigcap\{F \in 2^Y : \mu_2(F^c) > 0$ on and $f(A) \subseteq F\}$) $= \bigcap\{f^{-1}(F) \in 2^X : F \in 2^Y, \mu_2(F^c) > 0$ and $A \subseteq f^{-1}(F)\}$ $\supseteq \bigcap\{f^{-1}(F) \in 2^X : F \in 2^Y, \mu_1(f^{-1}(F^c)) > 0$ on and $A \subseteq f^{-1}(F)\}$

$$= \overline{A},$$

then $\overline{A} \subseteq f^{-1}(\overline{f(A)}).$
Thus $f(\overline{A}) \subseteq f(f^{-1}(\overline{f(A)})) \subseteq \overline{f(A)}.$
(2) Let $B \in 2^{Y}$, we have $f^{-1}(B) \in 2^{X}.$
Then $f(\overline{f^{-1}(B)}) \subseteq \overline{f(f^{-1}(B))} \subseteq \overline{B},$
so $(\overline{f^{-1}(B)}) \subseteq f^{-1}(f(\overline{f^{-1}(B)})) \subseteq f^{-1}(\overline{B}).$
(3) Let $B \in 2^{Y}.$
Then

 $f^{-1}(\overline{B^c}) = f^{-1}((B^\circ)^c) = (f^{-1}(B^\circ))^c = (f^{-1}(\overline{B^c})^c)^c = f^{-1}(\overline{B^c}) \supseteq \overline{f^{-1}(B^c)} = \overline{(f^{-1}(B))^c} = ((f^{-1}(B))^\circ)^c$

 $\operatorname{So}\left(\left(f^{-1}(B)\right)^{\circ}\right)^{c} \subseteq f^{-1}((B^{\circ})^{c})$ Hence $f^{-1}(B^{\circ}) \subseteq \left(f^{-1}(B)\right)^{\circ}$

The following Corollary is immediate from Definition 2.1 and Proposition 2.4.

Corollary 2.5. Let (X, μ_1) and (Y, μ_2) be *gosts's* and let a mapping $f: X \to Y$ be

 $\begin{array}{l} gos-continuous. \text{ Then:}\\ \overline{f(A)}\subseteq\overline{f(A)} \text{ for all } A\in 2^X.\\ \overline{f^{-1}(B)}\subseteq f^{-1}(\overline{B}) \text{ for all } B\in 2^Y.\\ f^{-1}(B^\circ)\subseteq \left(f^{-1}(B)\right)^\circ \text{ for all } B\in 2^Y. \end{array}$

The generalized ordinary smooth open map and generalized ordinary smooth closed map are defined as follows:

Definition 2.6. Let (X, μ_1) and (Y, μ_2) be

gosts's. Then a mapping $f: X \to Y$ is said to be: a generalized ordinary smooth open (briefly gos - open) if $\mu_1(A) \le \mu_2(f(A))$ for all $A \in 2^X$. a generalized ordinary smooth closed (briefly gos - closed) if $\mu_1(A^c) \le \mu_2(f(A^c))$ for all $A \in 2^X$.

Example 2.7. Let $X = \{a, b, c\}$. We define two mapping as follows: For each $C, D \in 2^X$.

$$\mu_{1}(C) = \begin{cases} 1, & \text{if } C = \emptyset; \\ \frac{1}{4}, & \text{if } C = X; \\ \frac{1}{6}, & \text{if } C = \{b, c\}; \\ 0, & \text{otherwise}, \end{cases}$$

and

$$\mu_{2}(D) = \begin{cases} 1, & \text{if } D = \emptyset; \\ \frac{1}{2}, & \text{if } D = X; \\ \frac{1}{5}, & \text{if } D = \{b, c\}; \\ 0, & \text{otherwise.} \end{cases}$$

Then $\mu_1, \mu_2 \in GOST(X)$. Consider the identity mapping $id: (X, \mu_1) \rightarrow (X, \mu_2)$. Then we can see that *id* is *gos* – *open* and *gos* – *closed*.

Then we obtain the following result:

Proposition 2.8. Let (X, μ_1) and (Y, μ_2) be gosts's. If $f: X \to Y$ is gos – open, then $f(A^\circ) \subseteq (f(A))^\circ$ for each $A \in 2^X$.

Proof. Let
$$A \in 2^X$$
. Since $f(A^\circ) = f(\bigcup \{ U \in 2^X : \mu_1(U) > 0 \text{ and } U \subseteq A \})$

$$= \bigcup \{f(U) \in 2^{Y}: U \in 2^{X}, \mu_{1}(U) > 0 \text{ and } f(U) \subseteq f(A) \}$$

$$\subseteq \bigcup \{f(U) \in 2^{Y}: U \in 2^{X}, \mu_{2}(f(U)) > 0 \text{ and } f(U) \subseteq f(A) \}$$

$$\subseteq \bigcup \{V \in 2^{Y}: \mu_{2}(V) > 0 \text{ and } V \subseteq f(A) \}$$

$$= (f(A))^{\vee}$$

$$f(A^{\circ}) \subseteq (f(A))^{\vee}$$

Definition 2.9. Let (X, μ_1) and (Y, μ_2) be *gosts's*. . Then a mapping $f: X \to Y$ is called a generalized ordinary smooth homeomorphism if f is a bijective and f, f^{-1} are generalized ordinary smooth continuous.

Now, we have the relation of generalized ordinary smooth homeomorphisms, gos - open and gos - closed as follow:

Theorem 2.10. Let (X, μ_1) and (Y, μ_2) be *gosts's* and let $f: X \to Y$ be a bijective and f be *gos* – *continuous*. Then the following statements are equivalent:

Is generalized ordinary smooth homeomorphism.

Proof. (1) \Longrightarrow (2) Assume that f is a generalized ordinary smooth homeomorphism. Then $\mu_1(A) \le \mu_2((f^{-1})^{-1}(A)) = \mu_2(f(A))$. Thus f is gos - open.

(2) \Longrightarrow (3) Assume that f is gos - open. Let $A \in 2^X$, we have $\mu_1(A^c) \le \mu_2(f(A^c))$. Since f is bijective, $\mu_1(A^c) \le \mu_2(f(A^c))$. Thus f is gos - closed.

(3) \Longrightarrow (1) Assume that f is gos - closed. Let $A \in 2^X$. . Then $\mu_1(A) \le \mu_2(f(A)) = \mu_2((f^{-1})^{-1}(A))$. Thus f^{-1} is gos - continuous. Hence f is a generalized ordinary smooth homeomorphism.

References

- Csa'sza'r, A'. Generalized topology, generalized continuity. Acta Math.Hungar, 2002; 96: 351–357.
- Jeong G.L., Kul H., Pyung K.L. Closure interior redefined and some types of compactness in ordinary smooth topological spaces. Kor. *Journal of Intelligent Systems*, 2013; 1(23): 80-86.
- Jeong G.L., Kul H., Pyung K.L. Closure interior and compactness in ordinary smooth topological spaces. Int. *Journal of Fuzzy Logic and Intelligent Systems*, 2014; 3(14): 231-239.

 Pyung K.L., Byeong G.R., Kul H. Ordinary smooth topological spaces. Int. *Journal of Fuzzy Logic and Intelligent Systems*, 2012; 1(12): 66-76.