ลำดับใหม่ที่สอดคล้องกับลำดับ *k-*ฟีโบนักชี

Some novel sequences related to k-Fibonacci sequences

พงษ์พันธ์ มุขวะชิ¹, เพ็ญศิริ สมพงษ์², สุพรรณี สมพงษ์³ และ ไกรลิขิต ลาดปะละ⁴* Phongphan Mukwachi¹, Pensiri Sompong², Supunnee Sompong³ and Krailikhit Latpala⁴*

Received: 13 March 2023; Revised: 18 May 2023; Accepted: 27 June 2023

บทคัดย่อ

งานวิจัยนี้เราได้นำเสนอสามลำดับรูปแบบใหม่ของ $\gamma_{_{_{\! /}}}$, $\alpha_{_{_{\! /}}}$ และ $\beta_{_{\! /}}$ ที่มีส่วนเกี่ยวข้องกันผ่านความสัมพันธ์เวียนเกิด และเราได้ สังเกตถึงความสัมพันธ์ของลำดับทั้งสามนี้สามารถแสดงให้อยู่ในรูปของลำดับ κ -ฟิโบนักซี เพื่อพิสูจน์ความสัมพันธ์นี้เราได้นำ หลักอุปนัยเชิงคณิตศาสตร์ มาใช้สำหรับแสดงความถูกต้องของทฤษฎี และแสดงผลลัพธ์ที่ได้จากการศึกษาในงานนี้

คำสำคัญ: ลำดับ k-ฟิโบนักซี, ความสัมพันธ์เวียนเกิด, อุปนัยเชิงคณิตศาสตร์

Abstract

In this research, we introduce three novel sequences of γ_n , α_n and β_n . These sequences are related to each other through the recurrence relation, and we have observed that their relationship can be expressed using k-Fibonacci sequences. To prove this relationship, we used mathematical induction. We have shown the validity of our theorem, and the results are presented in this study.

Keywords: k-Fibonacci sequences, recurrence relation, mathematical induction

[่] อาจารย์ ภาควิชาคณิตศาสตร์และสถิติ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฎสกลนคร สกลนคร 47000

ผู้ช่วยศาสตราจารย์ ภาควิชาวิทยาศาสตร์ทั่วไป คณะวิทยาศาสตร์และวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตเฉลิมพระเกียรติ สกลนคร 47000

³ ผู้ช่วยศาสตราจารย์ ภาควิชาคณิตศาสตร์และสถิติ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสกลนคร สกลนคร 47000

⁴ อ[้]าจารย์ ภาควิชาคณิตศาสตร์ คณะครุศาสตร์ มหาวิทยาลัยราชภัฏสกลนคร สกลนคร 47000

¹ Lecturer, Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand

² Assistant Professor, Department of General Science, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000 Thailand

³ Assistant Professor, Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand

⁴ Lecturer, Department of Mathematics, Faculty of Education, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand

Corresponding author: Krailikhit@snru.ac.th

Introduction

For any integer number $k \ge 1$, the n th k-Fibonacci sequence, denoted as $\{F_{k\cdot n}\}_{n=0}^{\infty}$, is defined by (Falcon & Plaza, 2007) as a recursive sequence as follows:

$$F_{k,n+1} = kF_{k,n} + F_{k,n-1}$$

where $F_{{\bf k},0}=0$ and $F_{{\bf k},l}=1.$ The first 8 members of k-Fibonacci sequences are shown below:

$$0, 1, k, k^2 + 1, ..., k^3 + 2k, k^4 + 3k^2 + 1, k^5 + 4k^3 + 3k, k^6 + 5k^4 + 6k^2 + 1.$$

(Atanassov, 2018) studied two new combined 3-Fibonacci sequences. Let a, b, c, d be arbitrary real numbers and $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence. The first set of sequences has the form for $n \ge 0$.

$$\alpha_{n+2} = \gamma_{n+1} + \beta_{n+1},$$

$$\beta_{n+2} = \gamma_{n+1} + \alpha_{n+1},$$

$$\gamma_{n+2} = \gamma_{n+1} + \gamma_{n}.$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\gamma_I = d$. From these sequences and for each natural number $n \ge 1$ the result are the following.

$$\begin{split} &\alpha_{2n+1} = b + F_{2n-1}a + (F_{2n}-1)d, \\ &\alpha_{2n} = a + F_{2n}c + (F_{2n+1}-1)d, \\ &\beta_{2n-1} = a + F_{2n-1}c + (F_{2n}+1)d, \\ &\beta_{2n} = b + F_{2n}c + (F_{2n+1}-1)d, \\ &\gamma_{n+2} = F_{n+1}c + F_{n+2}d. \end{split}$$

The second set of sequences has the form for $n \ge 0$,

$$\alpha_{n+1} = \alpha_{n+1} + \alpha_n,$$

$$\beta_{n+1} = \alpha_{n+1} + \gamma_n,$$

$$\gamma_{n+1} = \alpha_{n+1} + \beta_n.$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\alpha_I = d$. From these sequences and for each natural number $n \ge I$ the result are the following,

$$\begin{split} \alpha_n &= F_{n-l}c + F_n d, \\ \beta_{2n-l} &= (F_{2n}-1)a + b + (F_{2n+l}-1)d, \\ \beta_{2n} &= (F_{2n+l}-1)a + c + (F_{2n+2}-1)d, \end{split}$$

$$\gamma_{2n-1} = (F_{2n}-1)a + c + (F_{2n+1}-1)d,$$

$$\gamma_{2n} = (F_{2n+1}-1)a + b + (F_{2n+2}-1)d.$$

In the same year, he studied two additional new combined 3-Fibonacci sequences part 2. Let a,b,c be arbitrary real numbers and $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence. The first set of sequences has the form for $n \ge 0$,

$$\begin{split} \alpha_{n+1} &= \beta_n + \gamma_n, \\ \beta_{n+1} &= \alpha_n + \gamma_n, \\ \gamma_{n+1} &= \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \gamma_n, \end{split}$$

where $\alpha_o = 2a$, $\beta_o = 2b$, $\gamma_o = c$. From these sequences and for each natural number $n \ge 1$ the result are the following.

$$\begin{split} &\alpha_n = (F_{2n-l} + (-1)^n)a + (F_{2n-l} - (-1)^n)b + F_{2n}c, \\ &\beta_n = (F_{2n-l} - (-1)^n)a + (F_{2n-l} + (-1)^n)b + F_{2n}c, \\ &\gamma_n = F_{2n}a + F_{2n}b + F_{2n+l}c. \end{split}$$

The second set of sequences has the form for $n \ge 0$,

$$\alpha_{n+1} = \alpha_n + \frac{\beta_n + \gamma_n}{2},$$

$$\beta_{n+1} = \alpha_{n+1} + \gamma_n,$$

$$\gamma_{n+1} = \alpha_{n+1} + \beta_n.$$

where $\alpha_0 = a, \beta_0 = 2b, \ \gamma_0 = 2c$. From these sequences and for each natural number $n \ge 1$ the result are the following.

$$\begin{split} \alpha_n &= F_{2n-1} a + F_{2n} b + F_{2n} c, \\ \beta_n &= F_{2n} a + (F_{2n+1} + (-1)^n) b + (F_{2n+1} - (-1)^n) c, \\ \gamma_n &= F_{2n} a + (F_{2n+1} - (-1)^n) b + (F_{2n+1} + (-1)^n) c. \end{split}$$

(Nubpetchploy & Pakapongpun, 2021) generated three combined sequences related to Jacobsthal sequences. Let a, b, c, d be arbitrary real numbers and J_n be the Jacobethal sequences. The first set of sequences has the form for $n \ge 0$,

$$\gamma_{n+2} = \gamma_{n+1} + 2\gamma_n,$$

$$\alpha_{n+1} = \gamma_{n+1} + 2\beta_n,$$

$$\beta_{n+1} = \gamma_{n+1} + 2\alpha_n.$$

where $\alpha_0=a, \beta_0=b, \gamma_0=c, \gamma_1=d.$ From these sequences and for each natural number $n\geq 1$ the result are the following.

$$\begin{split} \gamma_n &= 2J_{n-1}c + J_n d, \\ \alpha_n &= 2\alpha_{n-1} + (J_n + (-1)^n)c + j_n d + (-2)^n (a-b), \\ \beta_n &= 2\beta_{n-1} + (J_n + (-1)^n)c + j_n d - (-2)^n (a-b). \end{split}$$

The second set of sequences has the form for $n \ge 0$,

$$\gamma_{n+2} = \gamma_{n+1} + 2\gamma_n,$$

$$\alpha_{n+1} = \gamma_n + 2\beta_n,$$

$$\beta_{n+1} = \gamma_n + 2\alpha_n.$$

where $\alpha_0=a, \beta_0=b, \gamma_0=c, \gamma_I=d.$ From these sequences and for each natural number $n\geq 1$ the result are the following.

$$\begin{split} \gamma_n &= 2J_{n-l}c + J_nd, \\ \alpha_n &= 2\alpha_{n-l} + (J_{n-l} + (-1)^{n-l})c + j_{n-l}d + (-2)^n(a-b), \\ \beta_n &= 2\beta_{n-l} + (J_{n-l} + (-1)^{n-l})c + j_{n-l}d - (-2)^n(a-b). \end{split}$$

The third set of sequences has the form for $n \ge 0$,

$$\gamma_{n+1} = \frac{\alpha_{n+1} + \beta_{n+1}}{2} + 2\gamma_n,$$

$$\alpha_{n+1} = \gamma_n + 2\beta_n,$$

$$\beta_{n+1} = \gamma_n + 2\alpha_n.$$

where $\alpha_o=2a$, $\beta_o=2b$, $\gamma_o=c$. From these sequences and for each natural number $n\geq I$ the result are the following.

$$\begin{split} \gamma_{n-1} &= (J_{2n-1}-1)(a+b) + J_{2n-1}c, \\ \alpha_n &= (J^2_{n+1}-J^2_n+1)(a+b) + (-1)^n J_n a + (-1)^{n+l} (2J_{n+1}+J_n)b + J_{2n}c, \\ \beta_n &= (J^2_{n+1}-J^2_n+1)(a+b) + (-1)^n J_n b + (-1)^{n+l} (2J_{n+1}+J_n)a + J_{2n}c. \end{split}$$

(Atanassov, 2022) introduce on two new combined 3-Fibonacci sequences. Let a, b, c, d, e be arbitrary real numbers and $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence. The first set of sequences has the form for $n \ge 1$,

$$\begin{split} \alpha_{n+1} &= \alpha_n + \alpha_{n-1}, \\ \beta_{n+1} &= \beta_n + \beta_{n-1}, \\ \gamma_{n+1} &= \frac{\alpha_n + \beta_n}{2} + \gamma_n. \end{split}$$

where $\alpha_0 = 2a$, $\beta_0 = 2b$, $\gamma_0 = c$, $\alpha_1 = 2d$, $\beta_1 = 2e$. From these sequences and for each natural number $n \ge I$ the result are the following.

$$\alpha_n = 2F_{n-1}a + 2F_nd,$$

$$\beta_n = 2F_{n-1}b + 2F_ne,$$

$$\gamma_n = F_na + F_nb + c + (F_{n+1}-1)d + (F_{n+1}-1)e.$$

The second set of sequences has the form for $n \geq 1, \label{eq:nloop}$

$$\begin{split} &\alpha_{n+l} = \alpha_n + \alpha_{n-l},\\ &\beta_{n+l} = \beta_n + \beta_{n-l},\\ &\gamma_{n+l} = \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \gamma_n. \end{split}$$

where $\alpha_0=a$, $\beta_0=b$, $\gamma_0=c$, $\alpha_1=2d$, $\beta_1=2e$. From these sequences and for each natural number $n\geq 1$ the result are the following.

$$\alpha_{n} = 2F_{n-1}a + 2F_{n}d,$$

$$\beta_{n} = 2F_{n-1}b + 2F_{n}e,$$

$$\gamma_{n} = F_{n}a + F_{n}b + c + (F_{n+1}-1)d + (F_{n+1}-1)e.$$

(Pakapongpun & Kongson, 2022) introduced three combined sequences related to k-Fibonacci sequences. Let a, b, c, d be arbitrary real numbers and $\{F_{k,n}\}_{n=0}^{\infty}$ be the k-Fibonacci sequence. The first set of sequences has the form for $n \geq 0$,

$$\gamma_{n+2} = k\gamma_{n+1} + \gamma_n,$$

$$\alpha_{n+1} = k\gamma_n + \beta_n,$$

$$\beta_{n+1} = k\gamma_n + \alpha_n.$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$, $\gamma_1 = d$. From these sequences the result are the following theorem 1.1.

Theorem 1.1. For any positive integer k and n,

(a)
$$\gamma_n = F_{k,n} d + F_{k,n,l} c,$$

(b)
$$\alpha_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-1} + F_{k,2n-2} + (F_{k,2} - 1))$$

$$c + a,$$

(c)
$$\beta_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-1} + F_{k,2n-2} + (F_{k,2} - 1))$$
$$c + b,$$

(d)
$$\alpha_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)d + (F_{k,2n-2} + F_{k,2n-3} + (F_{k,2n-2} + F_{k,2n-3} + F_{k,2n-3} + F_{k,2n-2} + F_{k,$$

(e)
$$\beta_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)d + (F_{k,2n-2} + F_{k,2n-3} + (F_{k,2n-2} + F_{k,2n-3} + F_{k,$$

The second set of sequences has the form for $n \ge 0$,

$$\gamma_{n+2} = k\gamma_{n+1} + \gamma_n,$$

$$\alpha_{n+1} = k\gamma_{n+1} + \beta_n,$$

$$\beta_{n+1} = k\gamma_{n+1} + \alpha_n.$$

where $\alpha_0=a,$ $\beta_0=b,$ $\gamma_0=c,$ $\gamma_I=d.$ From these sequences the result are the following theorem 1.2.

Theorem 1.2. For any positive integer k and n,

(a)
$$\gamma_n = F_{kn}d + F_{kn}c,$$

(b)
$$\alpha_{2n} = (F_{k,2n+1} + F_{k,2n} - 1)d + (F_{k,2n} + F_{k,2n-1} - 1)c + a,$$

(c)
$$\beta_{2n} = (F_{k,2n+1} + F_{k,2n} - 1)d + (F_{k,2n} + F_{k,2n-1} - 1)c + b,$$

(d)
$$\alpha_{2n-1} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-1} + F_{k,2n-2} - 1)c + b.$$

$$\beta_{2n-1} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-2} + F_{k,2n-3} + (F_{k,2} - 1) \\ c + a.$$

The third set of sequences has the form for $n \ge$

0,
$$\begin{aligned} \gamma_{n+1} &= k\gamma_n + \frac{\alpha_n + \beta_n}{2} \\ \alpha_{n+1} &= k\gamma_n + \beta_n, \\ \beta_{n+1} &= k\gamma_n + \alpha_n. \end{aligned}$$

where $\alpha_0 = 2a$, $\beta_0 = 2b$, $\gamma_0 = c$. From these sequences, the result are the following theorem 1.3.

Theorem 1.3. For any positive integer k and n,

(a)
$$\gamma_{n+1} = \gamma_n (F_{k,2} + F_{k-1}) = \gamma_1 (F_{k,2} + F_{k-1})^n$$
,

(b)
$$\alpha_{2n} = \gamma_1 (F_{k,2} + F_{k,l})^{2n-l} + a - b,$$

(c)
$$\alpha_{2n-1} = \gamma_1 (F_{k,2} + F_{k-1})^{2n-2} + b - a$$
.

In this paper, we introduce a new three set of combined sequences which are more general context related to *k*-Fibonacci sequences.

Main Results

We applied those three sets of sequences from (Pakapongpun & Kongson, 2022) work as follows. Let a, b, c, d and s be arbitrary real numbers with $s \neq 0$. The first set of sequences has the form for $n \geq 0$,

$$\gamma_{n+2} = k\gamma_{n+1} + \gamma_n,$$

$$\alpha_{n+1} = ks\gamma_{n+1} + \beta_n,$$

$$\beta_{n+1} = ks\gamma_{n+1} + \alpha_n.$$

where
$$\alpha_0 = a$$
, $\beta_0 = b$, $\gamma_0 = c$ and $\gamma_1 = d$.

From these sequences, we generate the first few members of the sequences $\{\gamma_n\}_{n=0}^{\infty}$, $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ with respect to n represented in Table 1, Table 2 and Table 3 respectively.

Table 1 This table shows first 8 members of $\{\gamma_n\}_{n=0}^{\infty}$ from the first set of sequences.

n	$\{\gamma_n\}_{n=0}^{\infty}$
0	c
1	d
2	kd + c
3	$k^2d + kc + d$
4	$k^3d + k^2c + c + 2kd + c$
5	$k^4d + k^3c + 3k^2d + 2kc + d$
6	$k^5d + k^4c + k^3d + 3k^2c + 3kd + c$
7	$k^6d + k^5c + 5k^4d + 4k^3c + 6k^2d + 3kc + d$

Table 2 This table shows first 8 members of $\{\alpha_n\}_{n=0}^{\infty}$ from the first set of sequences.

n	$\{\alpha_n\}_{n=0}^{\infty}$
0	a
1	ksc + b
2	ks(c+d) + a
3	$k^2sd + ks(2c+d) + b$
4	$k^3sd + k^2s(c+d) + ks(2c+2d) + a$
5	$k^4sd + k^3s(c+d) + k^2s(c+3d) + ks(3c+2d) + b$
6	$k^5sd + k^4s(c+d) + k^3s(c+4d) + k^2s(3c+3d) +$
	ks(3c+3d) + a
7	$k^6sd + k^5s(c+d) + k^4s(c+5d) + k^3s(4c+4d) +$
,	$k^2s(3c+6d) + ks(4c+3d) + b$

Table 3 This table shows first 8 members of $\{\beta_n\}_{n=0}^{\infty}$ from the first set of sequences.

n	$\{oldsymbol{\beta}_{n}\}_{n=0}^{\infty}$
0	b
1	ksc + a
2	ks(c+d) + b
3	$k^2sd + ks(2c+d) + a$
4	$k^3sd + k^2s(c+d) + ks(2c+2d) + b$
5	$k^4sd + k^3s(c+d) + k^2s(c+3d) + ks(3c+2d) + a$
6	$k^{5}sd + k^{4}s(c+d) + k^{3}s(c+4d) + k^{2}s(3c+3d) +$
	ks(3c+3d) + b
7	$k^6sd + k^5s(c+d) + k^4s(c+5d) + k^3s(4c+4d) +$
	$k^2s(3c+6d) + ks(4c+3d) + a$

Theorem 2.1. For any positive integer k and n,

$$(a) \gamma_n = F_{k,n}d + F_{k,n-l}c,$$

(b)
$$\alpha_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)sd + (F_{k,2n-1} + F_{k,2n-2} + F_{k,2n} - 1)$$
$$sc + a,$$

(c)
$$\beta_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)sd + (F_{k,2n-1} + F_{k,2n-2} + F_{k,2n-2$$

(d)
$$\alpha_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)sd + (F_{k,2n-2} + F_{k,2n-3} + F_{k,$$

(e)
$$\beta_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)sd + (F_{k,2n-2} + F_{k,2n-3} + F_{k,$$

Proof. we will prove (a) by mathematical induction.

Let P(n) be a statement $\gamma_n = F_{k,n}d + F_{k,n-l}c$ for $n \ge I$, we will show that P(I) is true.

Since $F_{k,l}d+F_{k,0}c=(1)d+(0)c=d=\gamma_l$, then P(1) is true. Let $m\geq 1$, assume that P(1),P(2),...,P(m-1), P(m) are true that is, $\gamma_n=F_{k,l}d+F_{k,l-l}c$, where $1\leq i\leq m$.

We will show that P(m+1) is true.

consider,

$$\begin{split} \gamma_{m+1} &= k \gamma_m + \gamma_{m-1} \\ &= k (F_{k,m} d + F_{k,m-1} c) + F_{k,m-1} d + F_{k,m-2} c \\ &= k (F_{k,m} + F_{k,m-1}) d + (k F_{k,m-1} + F_{k,m-2}) c \\ \gamma_{m+1} &= F_{k,m+1} d + F_{k,m} c. \end{split}$$

Then P(m+1) is true.

By mathematical induction, the statement P(n) is true for all $n \ge 1$.

Next, we will prove (b) by mathematical induction. Let P(n) be a statement,

$$\begin{split} \alpha_{2n} &= (F_{n - 2n} + F_{k, 2n - 1} - 1)sd \\ &\quad + (F_{k, 2n - 1} + F_{k, 2n - 2} + F_{k, 2} - 1)sc + a, for \ n \geq 1. \end{split}$$

We will show that P(1) is true.

Now consider,

$$\begin{split} &(F_{k,2(n)} + F_{k,2(1)-1} - 1)sd \\ &+ (F_{k,2(1)-1} + F_{k,2(1)-2} + F_{k,2} - 1)sc + a \\ &= (F_{k,2} + F_{k,1} - 1)sd + (F_{k,1} + F_{k,0} + F_{k,2} - 1)sc + a \\ &= (k+1-1)sd + (1+0+k-1)sc + a \\ &= ksd + ksc + a \\ &= ks(c+d) + a = \alpha_{2(1)}. \end{split}$$

Then P(1) is true.

Let $m \ge 1$, assume that P(m) is true that is,

$$\alpha_{2n} = (F_{k-2m} + F_{k,2n-1} - 1)sd + (F_{k,2m-1} + F_{k,2m-2} + F_{k,2} - 1)sc + a.$$

We will show that P(m+1) is true.

Consider.

$$\begin{split} \alpha_{2m+2} &= ks\gamma_{2m+1} + \beta_{2m+1} \\ &= ks(F_{k,2m+1}d + F_{k,2m}c) + ks\gamma_{2m} + \alpha_{2m} \\ &= ks(F_{k,2m+1}d + F_{k,2m}c) + ks(F_{k,2m}d + F_{k,2m-1}c) \\ &+ (F_{k,2m} + F_{k,2m-1}-1)sd + (F_{k,2m-1} + F_{k,2m-2} + F_{k,2}-1)sc + a \\ &= [(kF_{k,2m+1} + F_{k,2m})sd + (kF_{k,2m} + F_{k,2m-1})sc + (kF_{k,2m-1} + F_{k,2m-2})sc + F_{k,2m-2})sc + F_{k,2m-2})sc + F_{k,2m-2} + F_{k,2m-2} + F_{k,2m-2} + F_{k,2m-1} - 1)sd \\ &= (F_{k,2m+2} + F_{k,2m+1} - 1)sd \\ &+ (F_{k,2(m+1)-1} + F_{k,2(m+1)-2} + F_{k,2} - 1)sc + a. \end{split}$$

Then P(m+1) is true.

By mathematical induction the statement P(n) is true for all n>1.

The proof of (c) is similar to (b).

To prove equation (d) for $n \ge 2$, using (a) and (c) we have,

$$\begin{split} \alpha_{2n\text{-}l} &= ks\gamma_{2n\text{-}2} + \beta_{2n\text{-}2} \\ &= ks(F_{k,2n\text{-}2}d + F_{k,2n\text{-}3}c) + (F_{k,2n\text{-}2} + F_{k,2n\text{-}3} - 1)sd \\ &+ (F_{k,2n\text{-}3} + F_{k,2n\text{-}4} + F_{k,2} - 1)sc + b \\ &= [(kF_{k,2n\text{-}2} + F_{k,2n\text{-}3})sd + (F_{k,2n\text{-}2}sd\text{-}sd] + \\ [(kF_{k,2n\text{-}3} + F_{k,2n\text{-}4})sc + (F_{k,2n\text{-}3}sc + F_{k,2}sc\text{-}sc] \\ &+ b \\ &= (F_{k,2n\text{-}1} + F_{k,2n\text{-}2} - 1)sd + (F_{k,2n\text{-}2} + F_{k,2n\text{-}3} +$$

then

$$\alpha_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - I)sd + (F_{k,2n-2} + F_{k,2n-3} + F_{k,2} - I)sc + b.$$

is true.

By (a), (b), and the proof is similar to (d), then we have (e).

The proof is complete.

Next, we present the second sequences.

The second set of sequences has the form for

$$\begin{split} n \geq 0, \\ \gamma_{n+2} &= k \gamma_{n+1} + \gamma_n, \\ \alpha_{n+1} &= k \gamma_{n+1} + \beta_n, \\ \beta_{n+1} &= k \gamma_{n+1} + \alpha_n. \end{split}$$

where
$$\alpha_0 = a$$
, $\beta_0 = b$, $\gamma_0 = c$ and $\gamma_1 = d$.

From these sequences, we generate the first 7 members of the sequences $\{\alpha_n\}_{n=0}^\infty$ and $\{\beta_n\}_{n=0}^\infty$ with respect to n represented in Table 4, and Table 5 respectively.

Table 4 This table shows first 7 members of $\{\alpha_n\}_{n=0}^{\infty}$ from the second set of sequences.

n	$\left\{ a_{_{n}}^{}\right\} _{_{n=0}}^{\infty}$
0	a
1	ksd + a
2	$k^2sd + ks(c+d) + a$
3	$k^3sd + k^2s(c+d) + ks(c+2d) + b$
4	$k^4sd + k^3s(c+d) + k^2s(c+3d) + ks(2c+2d) + a$
5	$k^{5}sd + k^{4}s(c+d) + k^{3}s(c+4d) + k^{2}s(3c+3d) + ks(2c+3d) + b$
6	$k^6 sd + k^5 s(c+d) + k^4 s(c+5d) + k^3 s(4c+4d) + k^2 s(3c+6d) + k s(3c+3d) + a$

Table 5 This table shows first 7 members of $\{\beta_n\}_{n=0}^{\infty}$ from the second set of sequences.

n	$\{\beta_n\}_{n=0}^{\infty}$
0	b
1	ksd + a
2	$k^2sd + ks(c+d) + b$
3	$k^3sd + k^2s(c+d) + ks(c+2d) + a$
4	$k^4sd + k^3s(c+d) + k^2s(c+3d) + ks(3c+2d) + b$
5	$k^{5}sd + k^{4}s(c+d) + k^{3}s(c+4d) + k^{2}s(3c+3d) + ks(2c+3d) + a$
6	$k^6 sd + k^5 s(c+d) + k^4 s(c+5d) + k^3 s(4c+4d) + k^2 s(3c+6d) + ks(3c+3d) + b$

Theorem 2.2. For any positive integer k and n,

(a)
$$\gamma_n = F_{kn} d + F_{kn-l} c,$$

(b)
$$\alpha_{2n} = (F_{k,2n+1} + F_{k,2n} - 1)sd + (F_{k,2n} + F_{k,2n-1} - 1)sc + a,$$

(c)
$$\beta_{2n} = (F_{k,2n+1} + F_{k,2n} - 1)sd + (F_{k,2n} + F_{k,2n-1} - 1)sc + b,$$

(d)
$$\alpha_{2n-1} = (F_{k,2n} + F_{k,2n-1} - 1)sd + (F_{k,2n-1} + F_{k,2n-2} - 1)sc + b,$$

(e)
$$\beta_{2n-1} = (F_{k,2n} + F_{k,2n-1} - 1)sd + (F_{k,2n-1} + F_{k,2n-2} - 1)sc$$

+ a .

Proof. The proofs are similar to theorem 2.1.

Finally, the last sequences in our work.

The third set of sequences has the form for

$$\begin{split} n &\geq 0, \\ \gamma_{n+1} &= k\gamma_n + \frac{\alpha_n + \beta_n}{2s} \\ \alpha_{n+1} &= ks\gamma_n + \beta_n, \\ \beta_{n+1} &= ks\gamma_n + \alpha_n. \end{split}$$

where
$$\alpha_0 = 2as$$
, $\beta_0 = 2sb$ and $\gamma_0 = c$.

The first 7 members of the sequences $\{\gamma_n\}_{n=0}^\infty$, $\{\alpha_n\}_{n=0}^\infty$ and $\{\beta_n\}_{n=0}^\infty$ are show in Table 6, Table 7, and Table 8 respectively.

Table 6 This table shows first 7 members of $\{\gamma_n\}_{n=0}^{\infty}$ from the third set of sequences.

n	$\{\gamma_n\}_{n=0}^{\infty}$
0	С
1	kc + a + b
2	$k^2c + k(a+b+c) + a + b$
3	$k^3c + k^2(a+b+2c) + k(2a+2b+c) + a + b$
4	$k^4c + k^3(a+b+3c) + k^2(3a+3b+3c) +$
+	k(3c+3b+c) + a + b
ξ.	$k^5c + k^4(a+b+4c) + k^3(4c+4b+6c) +$
5	$k^{2}(6a+6b+4c) + k(4a+4b+c) + a + b$
6	$k^{6}c + k^{5}(a+b+5c) + k^{4}(5a+5b+10c) +$
	$k^{3}(10a+10b+10c) + k^{2}(10a+10b+5c) +$
	k(5a+5b+c) + a + b

Table 7 This table shows first 7 members of $\{\alpha_n\}_{n=0}^{\infty}$ from the third set of sequences.

n	$\{\alpha_{_{n}}\}_{_{n=0}}^{\infty}$
0	2as
1	ksc + 2bs
2	$k^2sc + ks(a+b+c) + 2as$
3	$k^3sc + k^2s(a+b+2c) + ks(2a+2b+c) + 2bs$
4	$k^4sc + k^3s(a+b+3c) + k^2s(3a+3b+3c) +$
	ks(3a+3b+c) + 2as
5	$k^5sc + k^4s(a+b+4c) + k^3s(4c+4b+6c) +$
	$k^2s(6a+6b+4c) + ks(4a+4b+c) + 2bs$
6	$k^6sc + k^5s(a+b+5c) + k^4s(5a+5b+10c) +$
	$k^3s(10a+10b+10c) + k^2s(10a+10b+5c) +$
	ks(5a+5b+c) + 2as

Table 8 This table shows first 7 members of $\{\beta_n\}_{n=0}^{\infty}$ from the third set of sequences.

n	$\{oldsymbol{eta}_n^{\infty}\}_{n=0}^{\infty}$
0	2bs
1	ksc + 2as
2	$k^2sc + ks(a+b+c) + 2bs$
3	$k^3sc + k^2s(a+b+2c) + ks(2a+2b+c) + 2as$
4	$k^4sc + k^3s(a+b+3c) + k^2s(3a+3b+3c) +$
	ks(3a+3b+c) + 2bs
5	$k^{5}sc + k^{4}s(a+b+4c) + k^{3}s(4c+4b+6c) +$
	$k^2s(6a+6b+4c) + ks(4a+4b+c) + 2as$
6	$k^6sc + k^5s(a+b+5c) + k^4s(5a+5b+10c) +$
	$k^3s(10a+10b+10c) + k^2s(10a+10b+5c) +$
	ks(5a+5b+c) + 2bs

Theorem 2.3. For any positive integer k and n,

(a)
$$\gamma_{n+1} = \gamma_n (F_{k,2} + F_{k,l}) = \gamma_l (F_{k,2} + F_{k,l})^n$$
,

(b)
$$\alpha_{2n} = \gamma_1 s(F_{k2} + F_{k1})^{2n-1} + as - bs,$$

(c)
$$\beta_{2n} = \gamma_1 s (F_{k,2} + F_{k,1})^{2n-1} + bs - as,$$

(d)
$$\alpha_{2n-1} = \gamma_1 s(F_{k,2} + F_{k,1})^{2n-2} + bs - as,$$

(e)
$$\beta_{2n-1} = \gamma_1 s(F_{k,2} + F_{k,1})^{2n-2} + as - bs$$
.

 $\begin{aligned} \textit{Proof.} & \text{ To prove (a) we will show that } \gamma_{n+l} = \\ \gamma_n(F_{k,2} + F_{k,l}) & \text{ since, } \gamma_{n+l} = k\gamma_n + \frac{\alpha_n + \beta_n}{2s} \text{ and we know that,} \\ \frac{\alpha_n + \beta_n}{2s} &= \frac{(ks\gamma_{n-1} + \beta_{n-1}) + (ks\gamma_{n-1} + \alpha_{n-1})}{2s} \\ &= k\gamma_{n-1} + \frac{\alpha_{n-1} + \beta_{n-1}}{2s}, \\ &\text{so, we have } \gamma_{n+l} = k\gamma_n + k\gamma_{n-l} + \frac{\alpha_{n-1} + \beta_{n-1}}{2s} \\ &\text{Since } \gamma_n = k\gamma_{n-l} + \frac{\alpha_{n-1} + \beta_{n-1}}{2s} \\ &\text{we get that,} \end{aligned}$

$$\gamma_{n+1} = k\gamma_n + \gamma_n$$

$$= \gamma_n (k+1)$$

$$\gamma_{n+1} = \gamma_n (F_{k,2} + F_{k,l}).$$

Next, we will show that $\gamma_{n+1} = \gamma_n (F_{k,2} + F_{k,1})^n$.

Since
$$\gamma_n = \gamma_{n-1} (F_{k,2} + F_{k,l})$$

we have that,

$$\begin{split} \gamma_2 &= \gamma_n \, (F_{k,2} + F_{k,l}). \\ \gamma_3 &= \gamma_2 \, (F_{k,2} + F_{k,l}) = \gamma_1 \, (F_{k,2} + F_{k,l})^2. \\ \gamma_4 &= \gamma_3 \, (F_{k,2} + F_{k,l}) = \gamma_1 \, (F_{k,2} + F_{k,l})^3. \\ \vdots \\ \gamma_{n+1} &= \gamma_1 \, (F_{k,2} + F_{k,l})^n. \end{split}$$

thus
$$\gamma_{n+1} = \gamma_n (F_{k,2} + F_{k,1}) = \gamma_1 (F_{k,2} + F_{k,1})^n$$
.

We will prove (b) by mathematical induction.

Let P(n) be the statement

$$\alpha_{2n} = \gamma_1 s(F_{k,2} + F_{k,l})^{2n-1} + as - bs$$
 for $n \ge 1$.

We will show that P(1) is true.

consider,

$$\gamma_{I}s(F_{k,2}+F_{k,I})^{2(I)-I} + as - bs$$

$$= s(kc+a+b)(k+1) + as - bs$$

$$= k^{2}sc + ksa + ksb + ksc + as - bs + as + bs$$

$$= k^{2}sc + ks(a+b+c) + 2as + \alpha_{2(I)}$$

Then P(1) is true.

Let $n \ge 1$, assume that P(m) is true.

That is,
$$\alpha_{2m} = \gamma_1 s(F_{k,2} + F_{k,l})^{2m-1} + as - bs$$
.

We will show that P(m+1) is true.

Consider,

$$\begin{split} \alpha_{2(m+1)} &= \alpha_{2m+2} \\ &= ks\gamma_{2m+1} + \beta_{2m+1} \\ &= ks\gamma_{2m+1} + \beta_{2m} + \alpha_{2m} \\ &= ks\gamma_1 (F_{k,2} + F_{k,1})^{2m} + ks\gamma_1 (F_{k,2} + F_{k,1})^{2m-1} \\ &+ \gamma_1 s (F_{k,2} + F_{k,1})^{2m-1} + as - bs \\ &= ks\gamma_1 (k+1)^{2m} + ks\gamma_1 (k+1)^{2m-1} \\ &+ \gamma_1 s (k+1)^{2m-1} + as - bs \\ &= ks\gamma_1 (k+1)(k+1)^{2m-1} + ks\gamma_1 (k+1)^{2m-1} \\ &+ \gamma_1 s (k+1)^{2m-1} + as - bs \\ &= \gamma_1 s (k+1)^{2m-1} + [k(k+1) + k + 1] + as - bs \\ &= \gamma_1 s (k+1)^{2m-1} + as - bs \\ &= \gamma_1 s (F_{k,2} + F_{k,1})^{2(m+1)-1} + as - bs \end{split}$$

then P(m+1) is true.

By mathematical induction the statement P(n) is true for all $n \ge 1$.

The proof of (c) is similar to (b).

From (a) and (c) we have (d), and similarly from (a) and (b) we also have (e).

Conclusion and Discussion

A new three combined sequences related to *k*-Fibonacci sequences from new types were introduced and explicit formulas for their members are given.

From our sequences,

the first set of sequences,

$$\gamma_{n+2} = k\gamma_{n+1} + \gamma_n$$

$$\alpha_{n+1} = ks\gamma_n + \beta_n$$

$$\beta_{n+1} = ks\gamma_n + \alpha_n$$

the second set of sequences,

$$\gamma_{n+2} = k\gamma_{n+1} + \gamma_n$$

$$\alpha_{n+1} = ks\gamma_{n+1} + \beta_n$$

$$\beta_{n+1} = ks\gamma_{n+1} + \alpha_n$$

the third set of sequences,

$$\gamma_{n+1} = k\gamma_n + \frac{\alpha_n + \beta_n}{2s}$$

$$\alpha_{n+1} = ks\gamma_n + \beta_n,$$

$$\beta_{n+1} = ks\gamma_n + \alpha_n.$$

If s=1, then the results correspond to the 3 set of sequences and the theorem 1.1, 1.2, and 1.3 in (Pakapongpun & Kongson, 2022). Other new schemes, modifying the standard form of k-Fibonacci sequences and new combined sequences will be discussed in the future.

Acknowledgements

We thank the referees for their valuable reports that have improved this work.

References

Falcon, S., & Plaza, Á. (2007). On the fibonacci k-numbers. Chaos, Solitons Fractals, 32(5), 1615-1624.

- Atanassov, K. T. (2018). On two new combined 3-Fibonacci sequences. *Notes on Number Theory and Discrete Mathematics*, *24*(2), 90-93.
- Atanassov, K. T. (2018). On two new combined 3-Fibonacci sequences. Part 2. *Notes on Number Theory and Discrete Mathematics*, *24*(3), 111-114.
- Nubpetchploy, S., Pakapongpun, A. (2021). Three combined sequences related to Jacobsthal sequences. *International Journal of Mathematics and Computer Science*, *16*(1), 149-157.
- Atanassov, K. T. (2022). On two new combined 3-Fibonacci sequences. Part 3. *Notes on Number Theory and Discrete Mathematics*, *28*(1), 143-146.
- Pakapongpun, A., & Kongson, J. 2022. "Three combined sequences related to k-Fibonacci sequences. Computer Science, 7(2), 551-559.