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บทคัดย่อ
งานวิจัยนี้ได้นำาการจำาลองเชิงตัวเลขมาใช้เพื่อศึกษาลักษณะการถ่ายเทความร้อนและการไหลในเจ็ตของไหลนาโนพุ่งชนแบบ
ราบเรียบที่มีพื้นผิวร้อนอุณหภูมิคงท่ีด้วยแบบจำาลองเดี่ยว ระเบียบวิธีไฟไนต์วอลุมถูกใช้เพื่อหาผลเฉลยของสมการควบคุม
การถ่ายเทความร้อนและการไหลโดยใช้ของไหลนาโนไททาเนียมออกไซด์ (TiO

2
) เป็นสารทำางานที่มีความเข้มข้นโดยปริมาตร

อยู่ระหว่าง 0% ถึง 4% การคำานวณได้ทำาการศึกษาถึงผลกระทบของการเปลี่ยนแปลงค่าเข้มข้นโดยปริมาตรของอนุภาคนาโน  
ค่าอัตราส่วนความสูง H ต่อความกว้างของทางไหลเข้า B และค่าเรย์โนลด์นัมเบอร์ ผลการคำานวณที่ได้พบว่าการถ่ายเท 
ความรอ้นเพิม่ขึน้ตามคา่เขม้ขน้โดยปรมิาตรของอนภุาคนาโนและและคา่เรยโ์นลด์นมัเบอรเ์มือ่พจิารณาจากทัง้คา่นสัเซลินมัเบอร ์
ณ ตำาแหน่งใดๆ และค่านัสเซิลนัมเบอร์เฉลี่ย แต่สำาหรับกรณีของการเปลี่ยนแปลงค่าอัตราส่วนความสูงต่อความกว้างของทาง
ไหลเข้าให้เพิ่มขึ้นสูงในช่วงระหว่าง 1 ถึง 4 นั้นทำาให้อัตราการถ่ายเทความร้อนมีค่าลดลง

คำาสำาคัญ: การพุ่งชนระบายความร้อน การส่งเสริมการถ่ายเทความร้อน ของไหลนาโน อนุภาคนาโนไททาเนียมออกไซด์

Abstract
This article presents a numerical investigation of heat transfer and fluid flow of a confined plane laminar nanofluid jet 
impingement on an isothermal heated surface using a single-phase model. The finite volume method was used for 
the solution of resulting governing equations. TiO

2
 nanoparticles dispersed in water with volumetric concentrations 

ranging between 0 and 4% were used as working fluid for simulating the heat transfer and fluid flow of nanofluid jet 
impingement. The influences of volumetric concentration of nanoparticles, nozzle-to-impingement surfaces (aspect 
ratio H/B, where H is the distance between the nozzle and the impingement surface and B is jet width) and Reynolds 
number were examined and discussed in detail. The results indicated that the volumetric concentration of nanoparticles 
and Reynolds number enhanced heat transfer when considered in terms of the local and average Nusselt number. 
However, heat transfer deteriorated whereas increasing aspect ratio ranged from 1 to 4.

Keywords: impinging jet, heat transfer enhancement, nanofluids, TiO
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Introduction
Impinging jets provide an effective and flexible way  
to transfer energy or mass in industrial applications.  
A directed liquid or gaseous flow released against a 
surface can efficiently transfer large amounts of thermal 
energy or mass between the surface and the fluid. Heat 
transfer applications include cooling of stock material  
during material forming processes, heat treatment (Ferrari 
et al., 2003), cooling of electronic components, heating  
of optical surfaces for defogging, cooling of turbine  
components, cooling of critical machinery structures, and 
many other industrial processes (Zuckerman & Lior, 2006).

 Nanofluids are a suspension of very fine solid 
particles (nanoparticles) with length scales of 1–100 
nm, dispersed in base fluids such as water, engine oil, 
and ethylene glycol (Choi & Eastman, 1995). Due to the 
enhancement in thermal conductivity and heat transfer 
provided by nano-fluids compared to classical heat transfer  
fluids, nanofluids have become highly significant for a 
wide range of engineering applications which require high  
heat dissipation rates. Such applications include heat  
exchangers (Venkitaraj et al., 1995) and cooling of  
electronic components which suffers from a high heat 
generation (Selvakumar & Suresh, 2012). Integrating 
nanofluids with impinging jets is considered a promising  
technique that can overcome the challenges of heat 
removal (Abdelrehim et al., 2019).

 The existing types of nanoparticles that are 
used suspended in fluids can be classified as follows: (1) 
some advanced structural materials with highest thermal 
conductivity such as graphene, CNTs, diamond etc. (2) 
some metallic simples with high thermal conductivity  
such as, Au, Ag, Cu, Al, Fe, etc. (3) some metal or  
non-metallic compounds such as CuO, Al

2
O

3
, TiO

2
, 

ZnO, SiC, SiO
2
 etc. After comprehensive analysis and  

comparisons, TiO
2
 nanofluid is a common type of nanofluid 

without extremely high thermal conductivity as found with 
some precious materials, for instance CNTs or Graphene 
based nanofluid. TiO

2
 nanofluid has some special features 

and unique points compared to other types. It is thought  
that TiO

2
 is one of the best materials for practical  

appl icat ion s ince TiO
2
 exhib i ts several more  

comprehensive and reliable superiorities compared to 
other materials. Firstly, TiO

2 
has been extensively used 

in the fields of cosmetics, printing and purification without  
any toxicity, which is an essential requirement for  
largescale application. Secondly, TiO

2
 nanoparticles have 

been produced in large industrial scale, which makes them 
economical and appropriate for high-volume applications 
in thermal fluid fields. Thirdly, TiO

2
 nanoparticles have 

outstanding chemical stability, acid and caustic corrosion 
resistance as well as high temperature resistance. Finally, 
TiO

2
 nanoparticles have shown excellent dispersivity  

in both polar and non-polar basefluids as reported  
extensively in the literature, and it can be further  
improved by adding some specialized dispersants  
 (Yang & Du, 2017).

 Several studies have investigated numerically, 
utilizing the single-phase model under a laminar flow  
regime using water-Al

2
O

3 
nanofluids. A confined impinging 

slot jets working with pure water or water-Al
2
O

3
 based 

nanofluids was numerically presented. The flow is laminar 
and a constant uniform temperature is applied on the 
target surface. The single-phase model approach was 
adopted in order to describe the nanofluid behavior and  
different particle volume concentrations. The results  
demonstrated that the stagnation point, the local and 
averaged Nusselt number values were increased 
when increasing particle concentrations and Reynolds  
numbers increased. The required pumping power ratio 
also increased with growing particle concentration (Manca 
et al., 2016).

 The single-and two-phase models of water-Al
2
O

3
  

nanofluids on the hydrodynamic and heat transfer  
characteristics of a confined single impinging jet were 
studied. A laminar flow was considered with a constant 
heat flux on the targeted surface. The effects of Reynolds  
number, jet height ratio, and nanoparticle volume  
fraction on the local and the averaged Nusselt number 
were determined. The results demonstrated that the  
two-phase model exhibited higher values of local and 
averaged Nusselt number with a maximum enhancement 
of 150% at H/W=4 and φ=4% while the single phase 
model showed twice the pumping power obtained by the 
two-phase model (Abdelrehim et al., 2019).

 The thermal and fluid dynamic behavior of a 
confined two-dimensional steady laminar nanofluid jet 
impinging on a horizontal plate embedded with five  
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discrete heating elements subjected to a constant surface 
heat flux was studied for a range of Reynolds number 
from 100 to 400. The results indicated that variation of 
inlet Reynolds number produced a significant change of 
the flow and heat transfer characteristics in the domain. 
Increasing the nanoparticle concentration from 0% to 
4% resulted in discernible change in equivalent Re and 
Pr caused by the modification of dynamic viscosity,  
effective density, thermal conductivity, and specific heat 
of the base fluid. Substantial influence of Re was evident 
on Eckert number and pumping power. Eckert number 
was decreased whereas pumping power was increased 
with the growth of Re (Mookherjee et al., 2020).

 Analysis of nanofluids f lowing through  
microchannel heat sinks was experimentally investigated. 
The fluid flow and convective heat transfer in different 
microchannel heat sinks using Al

2
O

3 
and TiO

2
 nanofluids 

were studied. The results demonstrated that the thermal 
conductivity and dynamic viscosity of nanofluids were 
enhanced with the increase of volume fraction. As a 
result, TiO

2
 nanofluids had a better behavior on thermal  

conductivity than Al
2
O

3
 nanofluids. However Al

2
O

3
  

nanofluids achieved a greater enhancement of heat  
transfer in terms of averaged heat transfer coefficient 
compared with TiO

2
 nanofluids, specifically for the volume 

fraction of 1.0% (Xia et al., 2016). 

 Nevertheless, TiO
2
 nanoparticles are more  

environment friendly and economically friendly (Yang 
& Du, 2017 ; Mosurkal et al., 2008) compared to Al

2
O

3
 

nanoparticles. Hence it is better to use water-TiO
2
  

nanofluid in real life applications. These reasons are to 
contribute of this research using water-TiO

2
 nanofluid 

as working fluid. Furthermore, several numerical studies 
are currently available on the numerical study of laminar 
heat transfer and fluid flow of nanofluids impingement jet  
utilizing the single-phase model, but there have been 
fewer studies on water-TiO

2
 nanofluid as working fluid.

 The objective of this study was to numerical  
evaluate the results of heat transfer and fluid flow  
obtained by the single-phase model in a confined plane 
laminar jet impingement using water-TiO

2
 nanofluid to 

cool the isothermal heated surface. The latest viscosity 
of water-TiO

2
 nanofluid equation was applied by fitting 

the experimental data. Furthermore, the influence of  
volumetric concentration of nanoparticles, aspect ratio 
and the jet inlet Reynolds number (varied from Re=100 
to 200, the flow is considered to be laminar (Manca et 
al., 2016 ; Mookherjee et al., 2020) were investigated. 

Methods 
 A. Problem description
 A schematic diagram of the two-dimensional  
confined impinging jet is shown in Figure 1. The jet width  
is B, the distance between the nozzle and the  
impingement surface (channel height) is H, and L  
represent the surface length. The jet impinges over  
the isothermal impingement surface while jet inlet  
temperature is taken as 293 K. The length of the  
isothermal impingement surface (heated surface) to  
the width of the impinging jet is fixed at L/B=50, this 
isothermal impingement has a constant temperature of 
313 K. The confinement surface is adiabatic. The aspect 
ratios (H/B) ranged from 1 to 4 to study the confining  
effect, and the flow is considered laminar with Re varying 
from 100 to 200. The working fluid is water-TiO

2
 nanofluid 

with the volumetric concentration of nanoparticles ranged 
from 0 to 4%. The flow of the impinging jet is assumed to 
be steady, two-dimensional, laminar and incompressible. 
The body forces are neglected and the fluid properties 
are assumed to be independent of temperature. Brownian 
motion and thermophoretic diffusions of the nanoparticles 
do not have any significant effect on convection heat 
transfer for the percentage of nanoparticle concentration 
considered in this study.

 B. Thermophysical properties of nanofluids
 The numerical simulations were performed using 
water-TiO

2 
nanofluid and the nanoparticle concentrations 

considered in the present analysis were 0%, 1%, 2%, 
3% and 4%. The thermophysical properties of pure water 
and TiO

2
 are given in Table 1 (Rohsenow et al., 1998). 

When the single-phase model was adopted in the  
present work as nanofluids with small nanoparticle volume 
concentration can be considered as Newtonian fluids 
for small temperature jumps (Mookherjee et al., 2020). 
The density and the specific heat of the nanofluids were 
evaluated using the formula developed for conventional 
solid–liquid mixtures as follows:
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(1) 

(2) 

 where φ , pbf, Pp, Cp,bf and Cp are the  
volumetric concentration of nanoparticles, density of the 
base fluid, density of the nanoparticles, specific heat of 
the base fluid, and the specific heat of the nanoparticles, 
respectively. The thermal conductivity of water-TiO

2
 

nanofluid was found by fitting measurement data as  
(He et al., 2009).

(3)

 where knf, kbf is the thermal conductivity of  
nanofluid and base fluid, respectively. 

 The following equation of the viscosity of  
water-TiO

2
 nanofluid was created to fit the experimental 

data (Alkasmoul et al., 2018).

(4)

 where μnf, μbf is the viscosity of nanofluid and 
base fluid, respectively.

 C. Governing equations
 In the present study, flows were assumed to 
be steady and incompressible. The governing equations 
include the conservation equations of mass, momentum, 
and energy, and can be written in the two-dimensional 
Cartesian coordinate system form as follows:

 Continuity:

(5)

 Momentum:

(6)

 Energy:

(7)

 where ui is velocities in the streamwise and  
crosswise directions respectively, T is temperature, and 
p is pressure.

4 
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where 𝑢𝑢𝑖𝑖  is velocities in the streamwise and 
crosswise directions respectively, 𝑇𝑇  is 
temperature, and 𝜕𝜕 is pressure. 
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solved discretized versions of all equations with a 
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convergence was judged by monitoring the 
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mass, momentum and energy, normalized by the 
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having converged when all above residuals fell 
below 0.0001%. 

The geometry of a two-dimensional plane 
impinging jet consists of the jet stream, impinging 
and confinement surfaces as shown in Figure 1. 
Therefore, computational boundaries involved were 
inlet, outlet, axis of symmetry and solid walls 
(impingement and confinement surfaces).  

At the inlet, the jet temperature 𝑇𝑇𝑗𝑗 is given at 
293 K. The jet stream had an almost uniform 
velocity profile. The Reynolds number was 
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 D. Numerical solution procedure
 The computations have been performed with 
in-house developed computational code. The governing 
equations were solved using the finite volume method 
(Patankar, 1980). This scheme solved discretized versions 
of all equations with a non-uniform a staggered grids. The 
principle of mass-flux continuity was improved indirectly 
via the solution of pressure-correction equations according 
to SIMPLE algorithm (Patankar, 1980). The convergence 
was judged by monitoring the magnitude of the absolute  
residual sources of mass, momentum and energy,  
normalized by the respective inlet fluxes. The solution was 
taken as having converged when all above residuals fell 
below 0.0001%.

 The geometry of a two-dimensional plane 
impinging jet consists of the jet stream, impinging and 
confinement surfaces as shown in Figure 1. Therefore, 
computational boundaries involved were inlet, outlet, 
axis of symmetry and solid walls (impingement and  
confinement surfaces). 

 At the inlet, the jet temperature is given at 293 
K. The jet stream had an almost uniform velocity profile. 
The Reynolds number was calculated based on jet width 
and mean centerline velocity as:

(8)

 

 Next, the outlet boundary was placed at which 
is sufficiently far away from the main region of interest. 
At this boundary streamwise gradients of all variables 
were set to zero. Then along the axis of symmetry, the 
normal velocity component and the normal gradients of 
other variables were set to zero. 

 Finally, solid walls included impingement and 
confinement surfaces. Also the impingement surface 
was considered isothermal, the impingement surface  

temperature Tw is given at 313 K and the confinement  
surface is adiabatic wall, respectively. The Nusselt  
number, Nu is defined as:

(9)

 Before proceeding to the discussion of the  
predicted results, it will beneficial to focus first on the effect 
of the grid density on the solution. Figure 2 shows the 
computational grid 246x30 at distance x/B=50 and H/B=4. 
Grid clustering is applied near the impingement surface 
and at the confinement surface. The grid-independency 
of the solutions was examined using three different grid 
sizes consisting of 7380 (246x30), 17900 (358x50), 
59040 (492x120) and 121880 (554x220) on the model 
H/B=4 at Re=100 with water as working fluid. The results 
on the third grid 492x120 can be considered as being  
grid-independent results because the refinement from the 
grid 492x120 to grid 554x220 produces the stagnation 
point Nusselt number difference too small as shown in 
Figure 3.
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where 𝑢𝑢𝑖𝑖  is velocities in the streamwise and 
crosswise directions respectively, 𝑇𝑇  is 
temperature, and 𝜕𝜕 is pressure. 
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D. Numerical solution procedure 

The computations have been performed with 
in-house developed computational code. The 
governing equations were solved using the finite 
volume method (Patankar, 1980). This scheme 
solved discretized versions of all equations with a 
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to SIMPLE algorithm (Patankar, 1980). The 
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At the inlet, the jet temperature 𝑇𝑇𝑗𝑗 is given at 
293 K. The jet stream had an almost uniform 
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Material Density Heat capacity Viscosity Thermal conductivity 
𝜌𝜌 (kg/m3) 𝑐𝑐𝑝𝑝 (J/kg.K) 𝜇𝜇 (Pa.s) 𝜆𝜆 (W/m.K) 

TiO2 4170 711 - 11.8 
Water 998.2 4182 993x10-6 0.597 

Table 1 Thermophysical properties of pure water and TiO
2
 particles at T = 293 K used in the computations 

Material
Density Heat capacity Viscosity Thermal conductivity

p (kg/m3) Cp (J/kg.K) μ (Pa.s) λ (W/m.K) 

TiO
2

4170 711 - 11.8

Water 998.2 4182 993x10-6 0.597

6 

Next, the outlet boundary was placed at 𝑥𝑥 = 50𝐵𝐵 

which is sufficiently far away from the main region 
of interest. At this boundary streamwise gradients 
of all variables were set to zero. Then along the 
axis of symmetry, the normal velocity component 
and the normal gradients of other variables were 
set to zero.  

Finally, solid walls included impingement and 
confinement surfaces. Also the impingement 
surface was considered isothermal, the 
impingement surface temperature 𝑇𝑇𝑤𝑤 is given at 
313 K and the confinement surface is adiabatic 
wall, respectively. The Nusselt number, Nu is 
defined as: 

Nu =
− (𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕)
𝑤𝑤

𝐵𝐵 

𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑦𝑦
                                         (9) 

Before proceeding to the discussion of the 
predicted results, it will beneficial to focus first on 
the effect of the grid density on the solution. Figure 
2 shows the computational grid 246x30 at distance 
x/B=50 and H/B=4. Grid clustering is applied near 
the impingement surface and at the confinement 
surface. The grid-independency of the solutions 
was examined using three different grid sizes 
consisting of 7380 (246x30), 17900 (358x50), 
59040 (492x120) and 121880 (554x220) on the 
model H/B=4 at Re=100 with water as working 
fluid. The results on the third grid 492x120 can be 
considered as being grid-independent results 
because the refinement from the grid 492x120 to 
grid 554x220 produces the stagnation point Nusselt 
number difference too small as shown in Figure 3. 
 

 
 

Figure 2 Sample of computational grid 246x30 
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 A. Numerical validation
 In order to verify the developed computational 
code, the simulation results including the stagnation point 
Nusselt number and the local Nusselt number along the 
impingement surface for H/B=4 were compared with the 
previously obtained numerical data. The present numerical 
results are in good agreement with the results of Manca et 
al. (2018) as shown in Table 2 and Figure 4, respectively.

Table 2 Validation of the stagnation point Nusselt 
number for H/B=4 and φ=0%

Re
Nu

0
/Pr1/3

%Error
Manca (2016) Present simulation

100 5.66 5.67 0.18%

150 7.02 7.07 0.71%

200 8.04 8.18 1.71%
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Figure 4 Validation of local Nusselt number Nux 
profiles are scaled with the stagnation point 
Nusselt number Nu0 for H/B=4 
 
A. Numerical validation 

In order to verify the developed computational 
code, the simulation results including the 

stagnation point Nusselt number and the local 
Nusselt number along the impingement surface for 
H/B=4 were compared with the previously obtained 
numerical data. The present numerical results are 
in good agreement with the results of Manca et al. 
(2018) as shown in Table 2 and Figure 4, 
respectively. 

Table 2 Validation of the stagnation point Nusselt number for H/B=4 and 𝜙𝜙=0% 

Re 
Nu0/Pr1/3 

%Error 
Manca (2016) Present simulation 

100 5.66 5.67 0.18% 
150 7.02 7.07 0.71% 
200 8.04 8.18 1.71% 

 
 

 

 
Figure 5 Streamlines and isotherms for H/B=2 and Re=150 (not to scale) (a) Streamline 𝜙𝜙 = 0%, (b) 
Isotherm 𝜙𝜙 = 0% (c) Streamline 𝜙𝜙 = 4%, (d) Isotherm 𝜙𝜙 = 4%  
 

(b) (a) 

(d) (c) 

Figure 5 Streamlines and isotherms for H/B=2 and Re=150 (not to scale) (a) Streamline φ=0%,  

(b) Isotherm φ=0%, (c) Streamline φ=4%, (d) Isotherm φ=4%
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 B. Influence of volumetric concentration 
 The numerical results of heat transfer and 
fluid flow were investigated at different volumetric  
concentrations of nanoparticles with values of φ= 0%, 1%, 
2%, 3% and 4% for H/B=2. Figure 5 illustrates streamlines  
and isotherms in the case of H/B=2 and Re=150 for  
volume concentration φ=0% and 4%, respectively. 

 The development of a vortex is generated by 
the impinging jet because of jet entrainment, confining 
effects, and isothermal confinement surface. It is seen 
that a vortex is generated in the immediate vicinity of 
the jet. The main jet stream impinges on the target  
isothermal heated impingement surface, gets deflected, 
and then flows downstream in a meandering path in  
between the recirculation and the impingement surface  
toward the outlet. Similar streamline and isotherm trends  
were observed for two volumetric concentration of 
nanoparticles. Furthermore, the velocity vectors for  
H/B=2, Re=150 and φ=4% are shown in Figure 6.

 Figure 7 shows the stagnation point Nulsselt 
number (Nu

0
) profiles for various volume concentrations 

and different Reynolds numbers. It is observed that the 
increased volume concentration, the Nu

0
 is increased due 

to increasing thermal conductivity. 

 Additionally, Figure 8 demonstrates local Nusselt 
number (Nu) distribution along the impingement surface 
for H/B=2 and Re=150 at various volume concentrations. 
It is observed that for increased volumetric concentration 
of nanoparticles, the values of Nu is increased. 
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Figure 6 Velocity vectors for H/B=2, Re=150 and 𝜙𝜙 = 4% (not to scale) 
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Figure 7 Stagnation point Nusselt number profiles at  
different volume concentrations and Re numbers for H/B=2

9 

at different volume concentrations and Re 
numbers for H/B=2 

 

 

Figure 8 Local Nulsselt number distribution along 
the impingement surface for H/B=2 and Re=150 
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Figure 8 Local Nulsselt number distribution along the  
impingement surface for H/B=2 and Re=150
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Figure 9 Streamlines and isotherms at different aspect ratios H/B and Re numbers, 𝜙𝜙 = 4% (not to scale) 

(a) Streamline at H/B=2 Re=100, (b) Isotherm at H/B=2 Re=100 
(c) Streamline at H/B=2 Re=200, (d) Isotherm at H/B=2 Re=200 
(e) Streamline at H/B=4 Re=100, (f) Isotherm at H/B=4 Re=100 
(g) Streamline at H/B=4 Re=200, (h) Isotherm at H/B=4 Re=200 

 
 
 
 
 
 
 
 
 
 
 
C. Influence of aspect ratio 

Figure 9 shows the streamlines and isotherms 
when H/B=2 and 4 at Re=100 and 200. At H/B=2 
and Re=100, a primary vortex is only generated 
below the jet. However, at H/B=4, and Re=100, 
200, both a primary and a secondary vortices are 
generated as displayed in Figures 9(e) and 8(g).  

 
Figure 10 shows that as H/B is increased, local 

Nusselt number is decreased due to the secondary 
vortex. The maximum of Nu is at the stagnation 
point and then Nu is dramatically decreased along 
the isothermal impingement surface. This is 
because increased thickness of the thermal 

boundary layer and decreased local velocity profile 
due to the velocity boundary layer.  

 
Furthermore, Figure 11 illustrates stagnation 

point Nusselt number profiles and Figure 12 
demonstrates average Nusselt number profiles in 
case of =0% and 4% at Re=150, respectively. It 
is found that both Nu0 and Nuavg decreased with 
increasing H/B. 
 

 
Figure 10 Local Nusselt number distribution along 
the impingement surface for 𝜙𝜙 = 4% and Re=150 
at different aspect ratio 
 

Figure 9 Streamlines and isotherms at different aspect ratios H/B and Re numbers, φ=4% (not to scale) 
 (a) Streamline at H/B=2 Re=100, (b) Isotherm at H/B=2 Re=100
 (c) Streamline at H/B=2 Re=200, (d) Isotherm at H/B=2 Re=200
 (e) Streamline at H/B=4 Re=100, (f) Isotherm at H/B=4 Re=100
 (g) Streamline at H/B=4 Re=200, (h) Isotherm at H/B=4 Re=200

 C. Influence of aspect ratio
 Figure 9 shows the streamlines and isotherms 
when H/B=2 and 4 at Re=100 and 200. At H/B=2 and 
Re=100, a primary vortex is only generated below the 
jet. However, at H/B=4, and Re=100, 200, both a primary 
and a secondary vortices are generated as displayed in 
Figures 9 (e) and 8 (g). 

 Figure 10 shows that as H/B is increased, local  
Nusselt number is decreased due to the secondary  
vortex. The maximum of Nu is at the stagnation point and 
then Nu is dramatically decreased along the isothermal 
impingement surface. This is because increased thickness 
of the thermal boundary layer and decreased local velocity 
profile due to the velocity boundary layer. 
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 Furthermore, Figure 11 illustrates stagnation 
point Nusselt number profiles and Figure 12 demonstrates 
average Nusselt number profiles in case of φ=0% and 
4% at Re=150, respectively. It is found that both Nu

0
 and 

Nu
avg

 decreased with increasing H/B.

 D. Influence of Reynolds number
 When Reynolds number was increased, the 
size of both vortices were increased, and the secondary 
vortex was moved towards downstream. The influence 
of Re on the heat transfer can be clarified as shown in 
Figures 9 (f) and 9 (h). Increasing Re leads to increase 
the heat transfer due to increasing temperature gradient 
at the isothermal impingement surface. Additionally, the 
influence of Re on the heat transfer can also be seen in 
terms of Nu, Nu

0
, and Nu

avg 
as displayed in Figures 13, 

14, and 15, respectively ; these Nusselt number profiles 
are rise with increasing Re.
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(a) Streamline at H/B=2 Re=100, (b) Isotherm at H/B=2 Re=100 
(c) Streamline at H/B=2 Re=200, (d) Isotherm at H/B=2 Re=200 
(e) Streamline at H/B=4 Re=100, (f) Isotherm at H/B=4 Re=100 
(g) Streamline at H/B=4 Re=200, (h) Isotherm at H/B=4 Re=200 
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Figure 10 Local Nusselt number distribution along the 

impingement surface for φ=4% and Re=150 at different 
aspect ratio
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Figure 11 Stagnation point Nulsselt number 
profiles for 𝜙𝜙 = 0, 4% and Re=150 at different 
aspect ratios 
 

 
Figure 12 Average Nulsselt number profiles for 
𝜙𝜙 = 0, 4% and Re=150 at different aspect ratios 
 
D. Influence of Reynolds number 

When Reynolds number was increased, the 
size of both vortices were increased, and the 
secondary vortex was moved towards downstream. 
The influence of Re on the heat transfer can be 
clarified as shown in Figures 9(f) and 9(h). 
Increasing Re leads to increase the heat transfer 
due to increasing temperature gradient at the 
isothermal impingement surface. Additionally, the 

influence of Re on the heat transfer can also be 
seen in terms of Nu, Nu0, and Nuavg as displayed in 
Figures 13, 14, and 15, respectively; these Nusselt 
number profiles are rise with increasing Re. 
 

 
Figure 13 Local Nulsselt number distribution along 
the impingement surface for various Re numbers 
at H/B=2 and 𝜙𝜙 = 0, 4% 

 
Conclusion 

The laminar heat transfer and fluid flow of 
nanofluids in a confined plane jet impingement 
were numerically investigated using the single-
phase model. The performance of the present 
simulation of jet impingement flow was evaluated 
against previous numerical data that was found to 
produce good predictions of the local Nusselt 
number along the impingement surface and the 
stagnation point Nusselt number. The influences of 
volumetric concentration of nanoparticles, aspect 
ratio and Reynolds number are examined in detail. 
The major findings can be summarized as follows: 

(1) The volumetric concentration of nanoparticles 
ranging from 0 to 4% increase the heat transfer in 
terms of the local and the stagnation Nusselt 
numbers. Similarly, the Reynolds number varied 
from 100 to 200 enhance these Nusselt numbers. 
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Conclusion
The laminar heat transfer and fluid flow of nanofluids  
in a confined plane jet impingement were numerically  
investigated using the single-phase model. The  
performance of the present simulation of jet impingement  
flow was evaluated against previous numerical data 
that was found to produce good predictions of the local  
Nusselt number along the impingement surface and 
the stagnation point Nusselt number. The influences of 
volumetric concentration of nanoparticles, aspect ratio 
and Reynolds number are examined in detail. The major 
findings can be summarized as follows:

 (1) The volumetric concentration of nanoparticles 
ranging from 0 to 4% increase the heat transfer in terms 
of the local and the stagnation Nusselt numbers. Similarly, 
the Reynolds number varied from 100 to 200 enhance 
these Nusselt numbers.

 (2) However, aspect ratio ranges from 1 to 4 and 
decrease the local, the stagnation, and average Nusselt 
numbers.
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