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บทคัดย่อ
ในบทความนี้ ผู้วิจัยได้นำาเสนอเซตเปิดแบบ δ-m เซตเปิดแบบ a-m ฟังก์ชันแบบ δ-m-local ตัวดำาเนินการแบบ Ra

m บนปริภูมิ
โครงสร้างเล็กสุดที่มีอุดมคติพร้อมทั้งศึกษาสมบัติของฟังก์ชัน และตัวดำาเนินการนี้ 

คำาสำาคัญ: เซตเปิดแบบ δ-m เซตเปิดแบบ a-m ฟังก์ชันแบบ δ-m-local ตัวดำาเนินการแบบ Ra
m ปริภูมิโครงสร้างเล็กสุดที่มี

อุดมคติ 

Abstract
In this article, the concepts of δ-m-open sets, a-m-open sets in a minimal structure space with an ideal are  
introduced. In addition, we present an a-m-local function and an Ra

m-operator in a minimal structure space with  
an ideal. We studied the properties of the function and this operator. 

Keywords: δ-m-open sets, a-m-open sets, δ-m-local functions, Ra
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Introduction
In 1945, Vaidyanathaswamy (1945) defined a local function 
in an ideal topological space and studied some properties 
of this function. In 1996, Maki, Umehara and Noiri (1996) 
defined a minimal structure and studied some properties 
of this structure. In 2014, Al-Omeri et al. (2014) defined 
an a-local function in an ideal topological space and also 
studied some properties of an a-local function. Later in 
2016, Al-Omeri et al. (2016) defined an Ra-operator in an 
ideal topological space and studied some properties of 
this operator. In this article, we introduce the concepts of 
δ-m-open sets and δ-m-open sets in a minimal structure  
space with an ideal and study some fundamental  
properties. Moreover, we introduce the notions of δ-m-local  
functions and Ra

m-operators in minimal structure spaces, 
along with studying some properties related to an  
δ-m-local function and an Ra

m-operator defined above.

Preliminaries
 Definition 2.15 Let X be a nonempty set and 
P(X) the power set of X. A subfamily m of P(X) is called 
a minimal structure (briefly MS) on X if Ø∈m  and X∈m. 
  By (X,m) we denote a nonempty set X 
with a minimal structure m on X and it is called a 
minimal structure space. Each member of m is said 
to be m-open and the complement of m-open is 
said to be m-closed.

  Definition 2.2 (Noiri & Popa, 2009) Let (X,m) be 
a minimal structure space and A⊆X. The m-closure of A, 
denoted by CIm(A) and the m-interior of A, denoted by 
Intm(A), are defined as follows ; 

 1) CIm(A)=∩{F:A⊆F, X \ F∈m},

 2) Intm(A)=∪{U:U⊆A, U∈m}.

  Lemma 2.3 (Maki & Gani, 1999) Let (X,m) be a  
minimal structure space and A,B⊆X, the following  
properties hold ; 

 (1) CIm(X \ A)=X \ Intm( A) and Intm(X \ A)=X \ 
CIm(A).

 (2) If X \ A∈m, then CIm(A)=A and if A∈m, then 
Intm(A)=A.

 (3) CIm(Ø)=Ø, CIm(X)=X, Intm(Ø)=Ø, and 
Intm(X)=X.

 ( 4 )  I f  A⊆B, t hen  CIm(A)⊆CIm(B)  and 
Intm(A)⊆Intm(B).

 (5) A⊆CIm(A) and Intm(A)⊆A.

 (6) CIm(CIm(A)) = CIm(A) and Intm(Intm(A)) = 
Intm(A).

  Lemma 2.4 (Maki & Gani, 1999) Let (X,m) be  
a minimal structure space and A⊆X, x∈X. Then x∈CIm(A)  
if and only if U∩A≠Ø) for every an m-open set U  
containing X.

  Definition 2.5 (Rosas et al., 2009) Let (X,m) be 
a minimal structure space and A⊆X.

 (1) A is called m-regular open if A=Intm(CIm(A)) 
  (2) A is called m-regular closed if X \ A is  
m-regular open.

 The family of all m-regular open sets of X is 
denoted by r(m) and the family of all m-regular closed 
sets of X is denoted by rc(m).

  Definition 2.6 (Ozbakir & Yildirim, 2009) An ideal  
I  on a minimal structure space (X,m) is a nonempty  
collection of subsets of X which satisfies the following 
properties ; 

 (1)  A∈I  and B⊆A implies B∈I  (heredity), 
  (2) A∈ I and B∈ I implies A∪B∈ I  (finite 
additivity). 

 The set I  together with a minimal structure 
space (X,m) is called a minimal structure space with an 
ideal, denoted by (X,m, I ).

Main Results
 Definition 3.1 Let (X,m) be a minimal structure 
space. A subset A is said to be δ-m-open if for each X∈A  
there exists an m-regular open set G such that X∈G ⊆ 

A. The complement of δ-m-open set is called δ-m-closed. 
The family of all δ-m-closed sets of X, denoted by δCm(X). 

  Theorem 3.2 Let (X,m) be a minimal structure 
space and A ⊆ X. The arbitrary union of δ-m-open sets 
is a δ-m-open set.

 Proof Let Bα be a δ-m-open set for all α∈J where  
J is an index set and let 

J
x B .α

α∈
∈  There exists β∈J 

such that x ∈ Bα. Since Bβ is δ-m-open, there exists 
an m-regular open set Gβ such that X∈Gβ⊆ Bβ. Then

J
x G B B .β β α

α∈
∈ ⊆ ⊆   Therefore 

J
Bα

α∈
 is δ-m-open.
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  Definition 3.3 Let (X,m) be a minimal structure 
space and A⊆X. A point x∈X is called a δ-m-cluster point 
of A if U∩A≠Ø for each m-regular open set U containing 
X.

  Definition 3.4 Let (X,m) be a minimal structure 
space and A⊆X. The set of all δ-m-cluster points of A 
is called δ-m-closure of A and is denoted by Cδm(A) and 
the union m-regular open sets contained in A is called  
the δ-m-interior of A, denoted by Iδm(A).

  Theorem 3.5 Let  (X,m) be a minimal structure 
space and A⊆X. Then A  is δ-m-open if and only if Iδm(A)=A.  
  Proof (⇒) Suppose that A is δ-m-open. By 
definition of δ-m-interior, Iδm(A)=A. Let x∈A. Since A 
is δ-m-open, there exists an m-regular open set O such 
that x∈O⊆A. This implies that x∈Iδm(A). Then A⊆Iδm(A).  
Hence A=Iδm(A)=A. (⇐) It follows from Theorem 3.2.

  Theorem 3.6 Let (X,m) be a minimal structure 
space and A,B⊆X. The following property hold ; 

 (1) If A⊆B, then Iδm(A)⊆Iδm(B),

 (2) If A⊆B, then Cδm(A)⊆Cδm(B).

 Proof (1) Assume that A⊆B and x∈Iδm(A). 
Then, there exists an m-regular open set G such that 
x∈G⊆A. Since A⊆B, we have x∈G⊆A⊆B. This implies 
that x∈Iδm(B). Hence Iδm(A)⊆Iδm(B).

 (2) Let A⊆B. Assume that x∉Cδm(B). Then there 
exists an m-regular open set U containing X such that 
U∩B=Ø. Since A⊆B, we have U∩A⊆U∩B =Ø. Thus 
x∉Cδm(A).  Therefore Cδm(A)⊆Cδm(B).

  Theorem 3.7 Let (X,m) be a minimal structure 
space and A⊆X. The following properties hold ; 

 (1) Cδm(A) = X \ Iδm(X \ A), 

 (2) Iδm(A) = X \ Cδm(X \ A).

 Proof (1) We will show that Cδm(A) = X \ Iδm(X \ A) 
by contrapositive. Assume that x ∉ X \ Iδm(X \ A). We get 
that X \ Iδm(X \ A). So there exists an m-regular open set 
G such that x ∈ G ⊆ X \ A. Then G∩A =Ø and x∉Cδm(A).  
Thus Cδm(A) ⊆ X \ Iδm(X \ A).

 Next, we show that X \ Iδm(X \ A) ⊆ Cδm(A)
by contrapositive. Assume that x∉Cδm(A). Then 
x is not a δ-m-cluster point of A. There exists  
an m-regular open set G containing x  such that G∩A =Ø. 

So x ∈ G ⊆ X \ A and we get that x ∈ Iδm(X \ A). Hence x 
∉ X \ Iδm(X \ A). Thus X \ Iδm(X \ A) ⊆ Cδm(A).

 (2) Since X \ A ⊆ X, we have Cδm(X \ A) = X \ 
Iδm(X \ (X \ A)) by (1) and we get  Cδm(X \ A) = X \ Iδm(A). 
Therefore Iδm(X \ A) = X \ Cδm(X \ A).

  Definition 3.8 Let (X,m) be a minimal structure 
space and A⊆X.

 (1) A is called a-m-open if A ⊆ Intm (CIm(Iδm(A))).
The family of all a-m-open sets of X is denoted by M a.  
  (2) A is called a-m-closed if CIδm(Intm (Cδm(A)))⊆A. 

 Theorem 3.9 Let (X,m) be a minimal structure 
space and A⊆X. Then A is a-m-open if and only if X \ A 
is a-m-closed. 

 Proof Assume that A is a-m-open. Then A ⊆ 

Intm (CIm(Iδm(A))). and X \ A ⊇ X \ (Intm (CIm(Iδm(A)))). By 
Lemma 2.3 and Theorem 3.7, X \ A ⊇ CIm(Intm (Cδm(X \ 
A))). Therefore, X \ A is a-m-closed.

 Conversely, assume that X \ A is a-m-closed. 
Then CIm(Intm (Cδm(X \ A))) ⊆ X \ A and X \ CIm(Intm (Cδm(X 
\ A))) ⊇ X \ (X \ A). By Lemma 2.3 and Theorem 3.7, Intm 

(CIm(Iδm(A))) ⊇ A. Hence A is a-m-open.

  Example 3.10 Let X = {a, b, c, d} with a minimal 
structure m = {Ø, {a,b}, {b,c}, {c,d}, {a,d}, x}. Then r(m) 
= {Ø, {a,b}, {a,d}, {b,c}, {c,d}, x}, and δOm(x) = {Ø, {a,b}, 
{a,d}, {b,c}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, x}, M 
a= {Ø, {a,b}, {a,d}, {b,c}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, 
{b,c,d}, x}. In this example {a,b},{a,d}∈M a but {a,b} ∩ 

{a,d} = {a} ∉ M a, that means M a does not have the 
property that any finite intersection of a-m-open sets is 
a-m-open.

 Definition 3.11 Let (X,m) be a minimal structure 
space and A⊆X. The a-m-closure of A, denoted by aCm(A) 
and the a-m-interior of A, denoted by aIm(A), are defined 
as follows ; 

 (1) aCm(A)=∩{F:X \ F∈ M a and A⊆F}, 
  (2) aIm(A)=∪{U:U∈ M a and U⊆A}.

  Theorem 3.12 Let (X,m) be a minimal struc-
ture space and A ⊆ X, x∈X, Then x∈aCm(A) if and 
only if U∩A≠Ø for every a-m-open set U containing x. 
  Proof (⇒) Suppose that there exists an a-m-open 
set U containing x such that U∩A=Ø. So A ⊆ X \ U and 
X \ U is a-m-closed. Since aCm(A) is the intersection of 
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all a-m-closed sets containing A, aCm(A) ⊆ X \ U. Since 
x ∉ X \ U, we have x ∉ aCm(A).

 (⇐) Assume that x ∉ aCm(A). Then there exists 
an a-m-closed set F such that A ⊆ F and x ∉ F. Choose  
U = X \ F. Then U is a-m-open and x ∈ X \ F = U.  
Moreover, U ∩ A ⊆ (X \ F) ∩ F = Ø.

  Theorem 3.13 Let (X,m) be a minimal structure 
space and A, B ⊆ X. The following properties hold ; 

 (1) If A ⊆ B, then aCm(A) ⊆ aCm(B).

 (2) If A ⊆ B, then aIm(A) ⊆ aIm(B).

 Proof (1) Assume that A ⊆ B and x ∉ aCm(B). 
Then there exists an a-m-open set U containing x such that  
U ∩ F = Ø. Since A ⊆ B, U ∩ A = Ø. Hence x ∉ aCm(A).  
  (2) Let A ⊆ B and x ∈ aIm(A). Then there exists 
an a-m-open set U such that x ∈ U ⊆ A. Since A ⊆ B, x 
∈ U ⊆ B. Therefore x ∈ aIm(B). 

  Proposition 3.14 Let (X,m) be a minimal structure 
space. Then Ø∈M a and X∈M a. 

 Proof Since Ø ⊆ Intm (CIm(Iδm(Ø))), Ø is a-m-open,  
and so Ø∈M a. Clearly X = Intm (CIm(X)), so X is an  
m-regular open. Then X is δ-m-open, that is Iδm(X)= X, 
and so X ⊆ Intm (CIm(Iδm(X))). Therefore  X∈M a.

  Theorem 3.15 Let (X,m) be a minimal structure  
space. Then the arbitrary union of elements of M  a 
belongs to M  a.

 Proof Let Vα be a-m-open for all α∈J and 

J
G V .α

α∈
= 

 
Then Vα ⊆ Intm (CIm(Iδm(Vα))) for all α∈J. 

Since Vα ⊆ G, it follows that Iδm(Vα) ⊆ Iδm(G) and so 
CIm(Iδm(Vα)) ⊆ CIm(Iδm(G)). Then Intm (CIm(Iδm(Vα))) ⊆ Intm 

(CIm(Iδm(G))). This implies that Vα ⊆ Intm (CIm(Iδm(G))) for 
all α∈J.  Thus m m m

J
V Int (Cl (I (G))).α δ

α∈
⊆  Therefore G 

⊆ Intm (CIm(Iδm(G))).

  Corol lary 3.16 Let (X,m) be a minimal 
structure space. Then the arbitrary intersection of  
a-m-closed sets is an a-m-closed set.

 Proof Let Gα  be a-m-closed for all α∈J. 
Then X \ Gα is a-m-open and so 

J
(X \G )α

α∈
  is  

a-m-open.  Since 
J j

X \ G (X \G ),α α
α∈ α∈

=   
J
Gα

α∈
  is  

a-m-closed.

  Remark 3.17 In a minimal structure space, by 
Corollary 3.16, aCm(A) is a-m-closed.

  Theorem 3.18 Let (X,m) be a minimal structure 
space and A⊆X. The following properties hold ; 

 (1) aCm(aCm (A)) = aCm(A), 

 (2) aIm(aIm (A)) = aIm(A).

 Proof (1) Clearly aCm(A) ⊆ aCm(aCm (A)). Since 
aCm(A) is a-m-closed, aCm(aCm (A)) ⊆ aCm(A).Therefore 
aCm(aCm (A)) = aCm(A).

 (2) Clearly aIm(aIm (A)) = aIm(A). Since aIm(A) 
a-m-open, aIm (A) ⊆ aIm(aIm (A)). Therefore aIm(aIm (A)) = 

aIm(A).

 Let (X,m, I ) be a minimal structure space with 
an ideal. For each x∈X, let M a (x) = {U : x∈U, U∈M a}

  
be the family of all a-m-open sets that contain x.

  Definition 3.19 Let (X,m, I ) be a minimal struc-
ture space with an ideal and A ⊆ X. Then

*a
mA ( I ,m) = 

{x∈X:U∩A∉I , for every U∈M a (x)} is called a -m
-local function of A with respect to I  and m. We denote 
simply 

*a
mA  for 

*a
mA ( I ,m).

  Remark 3.20 The minimal ideal is {Ø} and 
the maximal ideal is P(x) in any minimal structure 
space with an ideal (X,m, I ). It can be deduced that 

*a
m mA ({ } ,m) aC (A)∅ = and 

*a
mA (P(X),m)=∅  for every 

A ⊆ X.

  Remark 3.21 In general, 
*a
mA A⊄  and

*a
mA A.⊄  

  The next example shows that 
*a
mA A .⊄

  Example 3.22 Let X = {a,b,c,d} with a minimal 
structure m = {Ø, {a,b}, {b,c}, {c,d}, {a,d}, X} and I = 
{Ø, {a}, {b}, {a,b}},

 
A = {a,b}. Then M a = {Ø, {a,b}, 

{a,d}, {b,c}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, X} and 
*a
mA .=∅

  T h e o r e m  3 . 2 3  L e t  ( X , m , I  )  b e  
a minimal structure space with an ideal and A, B ⊆ X. 
The following properties hold ; 

 (1) 
*a
m( ) .∅ =∅ ]

 (2) If A B,⊆  then 
* *a a
m mA B .⊆

 (3) 
* * *a a a
m m m(A ) A .⊆

 (4) 
* * *a a a
m m mA B (A B) .∪ ⊆ ∪

 (5) 
* * *a a a
m m m(A B) A B .∩ ⊆ ∩

 (6) 
* * * *a a a a
m m m m(A\ B) \(B) A \ B .⊆



Properties of Ram-operator in Minimal Structure Space with an Ideal 217Vol 40. No 2, March-April 2021

 Proof (1) Assume 
*a
m( ) .∅ ≠∅  Then there 

exists 
*a
mx ( ) .∈ ∅  Since X∈M a (X), X∩Ø∉I. I t 

contradicts with X∩Ø=Ø∉I. Therefore 
*a
m( ) .∅ =∅  

  (2) Assume that A⊆B. We will show that 
* *a a
m mA B⊆  by contrapositive. Suppose that 

*a
mx B .∉ Then 

there exists U∈M a (X) such that U∩B∈I . From A⊆B 
and the property of I, U∩A∈I. Therefore 

*a
mx A .∉  

  (3) Assume that
* *a a
m mx (A ) ,∈  and U∈M a (X). 

Then 
*a
mA U∩ ∉  I and so 

*a
mA U .∩ ≠∅ Thus there ex-

ists 
*a
my A U,∈ ∩  and so  y∈U∈M  a (y). This implies that 

A∩U∉I . Therefore 
*a
mx A .∈

 (4) Since A⊆A∪B and B⊆A∪B, by (2) 
* *a a
m mA (A B)⊆ ∪  a n d  

* *a a
m mB (A B) .⊆ ∪  S o 

* * *a a a
m m mA B (A B) .∪ ⊆ ∪

 (5) Since A∩B⊆A and A∩B⊆B, by (2) 
* *a a
m m(A B) A∩ ⊆  a n d  

* *a a
m m(A B) B .∩ ⊆  S o 

* * *a a a
m m m(A B) A B .∩ ⊆ ∩

 (6) Since A\B⊆A, by (2) 
* *a a
m m(A\ B) A .⊆ So 

* * * *a a a a
m m m m(A\ B) \ B A \ B .⊆

 Theorem 3.24 Let (X,m) be a minimal structure 
space and I , J  are ideals on X where I ⊆J . Then 

*a
mA (  J ,m)  ⊆

*a
mA (  I ,m) for all A⊆X.

 P r o o f  L e t  A ⊆ X .  A s s u m e  t h a t  
*a
mx A (∈ J ,m).  Then U∩A∉J  for every  U∈M a (x).  

Since I ⊆J , U∩A∉I  for every  U∈M a (x). Thus 
*a
mx A (∈ I , m). Hence 

*a
mA ( J, m) ⊆

*a
mA (  I, m).

 Theorem 3.25 Let (X,m, I ) be a minimal  
structure space with an ideal and A⊆X. The following 
properties hold ; 

 (1) 
*a
m mA aC (A),⊆

 (2) 
*a
m mA aC (A),=  (i,e.,

*a
mA  is an a-m-closed 

subset).

 Proof (1) Assume that x∉aCm(A). Then there  
exists an a-m-closed  set  F  such that  A⊆F and  x∉F.  
Thus x ∈ X \ F, and so X \ F ∈M a (x). Hence (X\F)∩A = 
Ø∈ I , and so 

*a
mx A .∉  This implies that 

*a
m mA aC (A).⊆

 (2) It is clear that 
* *a a
m m mA aC (A ).⊆  Next, we 

will prove that 
* *a a

m m maC (A ) A .⊆  Let 
*a

m mx aC (A )∈ and  
U∈M a ( x).  Then 

*a
mA U .∩ ≠∅  Therefore there exists 

*a
my A U,∈ ∩  so U∈M a  ( y).  Since 

*a
my A ,∈  A∩U∉I , 

and so 
*a
mx A∈ . Then

* *a a
m m mA aC (A ).=

 Theorem 3.26 Let (X,m, I ) be a minimal  
structure space with an ideal and A⊆X. The following 
properties hold ;

 (1) If A∈I , then 
*a
mA .=∅

 (2) If  U∈I , then 
* *a a
m mA (A U) .= ∪

 (3) If U∈I , then 
* *a a
m mA (A\U) .=

 Proof (1) Assume that 
*a
mA .≠∅  Then there exists 

*a
mx A .∈  Since  X∈M a (x), A=X∩A∉ I .

 (2) Assume that  U∈I. Since A⊆A∪U by Theo-
rem 3.23(2), we get 

* *a a
m mA (A U) .⊆ ∪  Next, we will prove 

that 
* *a a
m m(A U) A∪ ⊆  by contrapositive. Suppose that 

*a
mx A .∉  Then there exists V∈M a(x) such that A∩V∈I. 

Since (A∪U)∩V=(A∩V)∪(U∩V)∈I , (A∪U)∩V∈I . 
Therefore 

*a
mx (A U) .∉ ∩

 ( 3 )  A s s u m e  t h a t  U ∈ I  .  S i n c e 
* * * *a a a a
m m m mA (A X) (A ((X \U) U)) (( A\U) (A U))= ∩ = ∩ ∪ = ∪ ∪  

and A∩U⊆U∈I , by (2) 
* *a a
m mA (A\U) .=

 Definition 3.27 Let (X,m,I ) be a minimal 
structure with an ideal. An operator a

m :P(X) P(X)ℜ →  
i s  de f i ned  as  fo l l ows  ;  f o r  eve ry  A∈P(X),  

a
m(A) { x X :ℜ = ∈ there exists U∈M a(x) such that U\A∈ 

I }.

 Theorem 3.28 Let (X,m,I ) be a minimal 
structure space with an ideal and A∈P(X). Then 

*a a
m m(A) X \(X \ A) .ℜ =

 Proof Let a
mx (A).∈ℜ  Then there exists 

an a-m-open set U containing x such that U\A∈   
I. Thus U ∩ (X \ A)∈ I . So 

*a
mx (X \ A)∉  and hence 

*a
mx X \(X \ A) .∈  Therefore 

*a a
m m(A) X \(X \ A) .ℜ ⊆

 For the reverse inclusion, let 
*a
mx X \(X \ A) .∈  

Then 
*a
mx (X \ A) .∉  Thus there exists an a-m-open set  

U containing x such that U∩(X \ A)∈I . This implies that 
U \ A∈I . Hence a

mx (A).∈ℜ  So 
*a a
m mX \(X \ A) (A).⊆ℜ

Therefore 
*a a

m m(A) X \(X \ A) .ℜ =

 Example 3.29 Let X = {a,b,c,d)}
 
with a minimal 

structure m = {Ø, {a,b}, {b,c}, {c,d}, {a,d}, X} andI = 
{Ø, {a}, {b}, {a,b}},

 
A = {a,b}. Then = {Ø, {a,b}, {a,d}, 

{b,c}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, X} and 
a
m(A) {a,b} .ℜ =

 Theorem 3.30 Let (X,m, I ) be a minimal structure 
space with an ideal, and A X.⊆  Then a

m(A)ℜ  is  a-m-open.  
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  Proof We know that 
*a a

m m(A) X \(X \ A)ℜ =  and 
*a
m(X \ A)  is a-m-closed. Therefore a

m(A)ℜ  is a-m-open.

 Theorem 3.31 Let (X,m, I ) be a minimal  
structure space with an ideal and A,B⊆X. Then the  
following properties hold ; 

 (1) If A⊆B, then a a
m m(A) (B).ℜ ⊆ℜ

 (2) If  A⊆B, then a a a
m m m(A B) (A) (B).ℜ ∩ ⊆ℜ ∩ℜ

 (3) If  A⊆B, then a a a
m m m(A) (B) (A B).ℜ ∪ℜ ⊆ℜ ∪

 (4) If A∈M a, then a
mA (A).⊆ℜ

 (5) If A⊆B, then a a a
m m m(A) ( ( A)).ℜ ⊆ℜ ℜ

 Proof (1) Assume that A⊆B. Then X \ B⊆X \ A.  
By Theorem 3.23(2), 

* *a a
m m(X \ B) (X \ A)⊆  and hence 

* *a a
m mX \(X \ A) X \(X \ B) .⊆  Therefore a a

m m(A) (B).ℜ ⊆ℜ

 ( 2 )  S i n c e  A ∩ B ⊆ A  a n d  A ∩ B ⊆ B ,
a a
m m(A B) (A)ℜ ∩ ⊆ℜ  and a a

m m(A B) (B)ℜ ∩ ⊆ℜ . There-
fore a a a

m m m(A B) (A) (B).ℜ ∩ ⊆ℜ ∩ℜ ]

 ( 3 )  S i n c e  A ⊆ A ∪ B  a n d  B ⊆ A ∪ B , 
a a
m m(A) (A B)ℜ ⊆ℜ ∪  and a a

m m(B) (A B).ℜ ⊆ℜ ∪ There-
fore a a a

m m m(A) (B) (A B).ℜ ∪ℜ ⊆ℜ ∪

 (4)  Assume that  A∈M a.  Then X \ A 
is a-m-closed. By Theorem 3.25(1), we get that 

*a
m m(X \ A) aC (X \ A) X \ A.⊆ =  T h e r e f o r e 

*a a
m mA X \(X \ A) X(X \ A) (A).= ⊆ =ℜ

 (5) By Theorem 3.30, we get that a
m(A)ℜ is  

a-m-open. By (4), we get that a a a
m m m(A) ( ( A)).ℜ ⊆ℜ ℜ

 Theorem 3.32 Let (X,m, I ) be a minimal struc-
ture space with an ideal and A, B, U⊆X. Then the following 
properties hold ; 

 (1) If U∈I , then a a
m m(A\U) (A).ℜ =ℜ

 (2) If U∈I , then a a
m m(A U) (A).ℜ ∪ =ℜ

 (3) If (A \ B)∪(B \ A)∈ I , then a a
m m(A) (B).ℜ =ℜ

 (4) If A∈I , then 
*a a

m m(A) X \ X .ℜ =

 Proof (1) Assume that  A⊆X,  U ∈I . By Theorem 
3.26(2) and 3.28, we have 

*a a
m m(A\U) X \(X \(A\U))ℜ =

*a
mX \((X \ A) U))= ∪

*a
mX \(X \ A) .=  T h e r e f o r e 

a a
m m(A\U) (A).ℜ =ℜ

 (2) Assume that U∈I . By Theorem 3.26(3),  
w e  h a v e  

*a a
m m(A U) X \(X \(A U))ℜ ∪ = ∪  

* *a a a
m m mX \((X \ A)\U) X \(X \ A) (A).= = =ℜ

 (3) Assume that (A \ B)∪(B \ A) ∈ I .   
Thus   
  

 (4) Assume that A∈I . By Theorem 3.26(3),  
we get that 

* *a a a
m m m(A) X \(X \ A) X \ X .ℜ = =

 Theorem 3.33 Let (X,m,I ) be a minimal  
structure space with an ideal and A⊆X. Then 

a a a
m m m(A) ( ( A))ℜ =ℜ ℜ  if and only if 

* * *a a a
m m m(X \ A) ((X \ A) ) .=   

  Proof It follows from the facts that,

 I) 
*a a

m m(A) X \(X \ A)ℜ =  and aℜ

 I I )  
* * * *a a a a
m m m m( (A)) X \[X \(X \(X \ A) )]ℜ ℜ =  

* *a a
m mX \((X \ A) ) .=

 Therefore a a a
m m m(A) ( ( A))ℜ =ℜ ℜ if and only if 

* * *a a a
m m m(X \ A) ((X \ A) ) .=

Discussion and Conclusion
 The aim of this article is to introduce the results 
of properties of some sets in a minimal structure space 
with an ideal. In addition, we study some properties of  
δ-m-open sets, a-m-open sets in a minimal structure space 
with an ideal. Moreover, we define an δ-m-local function  
and an Ra

m-operator in a minimal structure space with an 
ideal. Someproperties of them are obtained.
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m m m(A) X\ (X\ A) X\ X . = =  

Theorem 3.33 Let (X,m,  I   )  be a minimal 
structure space with an ideal and A X.  Then  

a a a
m m m(A) ( (A)) =   if and only if 

* * *a a a
m m m(X\ A) ((X\ A) ) .=   

  Proof It follows from the facts that, 
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m m(A) X\ (X\ A) =  and a  

  II) * * * *a a a a
m m m m( (A)) X\ [X\ (X\ (X\ A) )]  =  
* *a a

m mX\ ((X\ A) ) .=  

  Therefore a a a
m m m(A) ( (A)) =   

if and only if * * *a a a
m m m(X\ A) ((X\ A) ) .=  

Discussion and Conclusion 
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with an ideal. In addition, we study some properties 
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