ตัวกรองไฮเพอร์วิภัชนัยแบบอ่อนของพีชคณิตบีอีไฮเพอร์ Fuzzy Weak Hyper Filters of Hyper BE-Algebras

วรุจน์ นาคเสน1 Warud Nakkhasen¹

Received: 5 October 2019 ; Revised: 3 March 2020 ; Accepted: 24 March 2020

บทคัดย่อ

ในบทความวิจัยนี้ได้แนะนำแนวคิดของตัวกรองไฮเพอร์วิภัชนัยแบบอ่อนในพีชคณิตบีอีไฮเพอร์ และได้ศึกษาสมบัติบางประการ ของตัวกรองไฮเพอร์วิภัชนัยแบบอ่อน จากนั้นได้แสดงว่าเซตของตัวกรองไฮเพอร์วิภัชนัยแบบอ่อนทั้งหมดของพีชคณิตบีอีไฮเพอร์ เป็นแลตทิซบริบูรณ์ที่มีการแจงแจง ยิ่งไปกว่านั้นได้จำ แนกลักษณะเฉพาะของพีชคณิตบีอีไฮเพอร์นอเทอร์เรียน และพีชคณิต บีอีไฮเพอร์อาร์ทิเนียน โดยใช้ตัวกรองไฮเพอร์วิภัชนัยแบบอ่อน

คำ สำ คัญ: ตัวกรองไฮเพอร์วิภัชนัย ตัวกรองไฮเพอร์วิภัชนัยแบบอ่อน พีชคณิตบีอี พีชคณิตบีอีไฮเพอร์

Abstract

The aim of this work is to introduce the notion of fuzzy weak hyper filters in hyper BE-algebras and investigate some of their properties. This research shows that the set of all fuzzy weak hyper filters of hyper BE-algebras is a distributive complete lattice. Also, the concepts of Noetherian hyper BE-algebras and Artinian hyper BE-algebras are characterized by their fuzzy weak hyper filters.

Keywords: fuzzy hyper filter, fuzzy weak hyper filter, BE-algebra, hyper BE-algebra

^{ี&#}x27; อาจารย์, ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม อำเภอกันทรวิชัย จังหวัดมหาสารคาม 44150
¹ Department of Mathematics, Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 4

Introduction

The fuzzy set was introduced by Z adeh¹ as a function from a nonempty set X to the unit interval $[0,1]$. Later, many researchers have discussed the generalizations of the concepts of fuzzy sets with applications in computing, logic and many ramifications of pure and applied mathematics. Kim and $Kim² introduced the notion of $\frac{1}{2}$$ BE-algebras, as a generalization of BCK-algebras 3 and BCI-algebras⁴. In 2010, the concept of fuzzy ideals in BE-algebras was introduced and some of its properties were investigated by Song, Jun and Lee⁵. Then, Dymek and Walendziak⁶ studied and characterized the concept of fuzzy filters in BE-algebras. some types of hyper filters on hyper BE-algebras.

The hyperstructure theory was introduced by Marty⁷ in 1934 as a generalization of ordinary algebraic structures. Radfar, Rezaei and Borumand Saeid⁸ applied the hyper theory to introduce the notion of hyper BE-algebras, as a generalization of BE-algebras. In 2015, Cheng and Xin⁹ investigated some types of hyper filters on hyper BE-algebras.

In this work, the concept of fuzzy weak hyper filters of hyper BE-algebras is introduced, and its properties are considered. Finally, the concepts of Noetherian **Preliminaries** hyper BE-algebras and Artinian hyper BE-algebras are myper DE algebras and ∧tunian hyper DE algebras.
Characterized by their fuzzy weak hyper filters.

Preliminaries

Let X be a nonempty set. The mapping \circ , X x $X \rightarrow P^*(X)$, where $P^*(X)$ denotes the set of all nonempty subsets of *H*, is called a *hyperoperation*¹⁰⁻¹³ on *H*. The hyperstructure *(H,*O*)* is called a *hypergroupoid.* Let *A* and *B* be any two nonempty subsets of H and $x \in H$. Then, we denote no don *het X* be a nonempty set. The mapping on . The mapping of \mathbb{R}^n

$$
A \circ B = \bigcup_{a \in A, b \in B} a \circ b,
$$

$$
A \circ x = A \circ \{x\} \text{ and } x \circ B = \{x\} \circ B.
$$

Let *H* be a nonempty set and \circ : $X \times X \rightarrow P^*(X)$ be a hyperoperation. Then (H, o, I) is called a *hyper* BE-algebra⁸ if it satisfies the following axioms: *h*e a hyperoperation. Then $(H, 0, I)$ is called a *hy*
PE-clocked⁸ if it satisfies the following axioms:

(i)
$$
x < 1
$$
 and $x < x$;
(ii) $x \circ (y \circ z) = y \circ (x \circ z)$;

(iii)
$$
x \in I
$$
 o x;
(iv) $I < x$ implies $x = I$;

for all $x, y, z \in H$, where the relation " \lt " is defined by $x \leq y$ if and only if $I \in x \circ y$.

Example 2.1⁸ Define the hyperoperation "o" on $\mathbb R$ as follows:

$$
x \circ y = \begin{cases} \{y\} & \text{if } x = 1; \\ \mathbb{R} & \text{otherwise.} \end{cases}
$$

Then, (ℝ,∘, 1) is a hyper BE-algebra. Then, *(,O,1)* is a hyper BE-algebra. **Example 2.28** Let \mathcal{L}

Example 2.2⁸ Let $X = \{1, a, b\}$. Define the hyperoperation "^{o"} on as follows:

\overline{O}		a	
	{1}	${a}$	{b}
a	$\{I,a\}$	$\{1,a,b\}$	$\{1,a\}$
h	$\{1,a,b\}$	${a}$	$\{1,a,b\}$

Then, (H, o, I) is a hyper BE-algebra.

Let F be a nonempty subset of a hyper BE -algebra *H* and *I* ∈ *F*. Then *F* is called:

(i) a *weak hyper filter*⁸ of *H* if $x \circ y \subseteq F$ and $x \in F$, (ii) a *hyper* filter
8 of is ≈ and if is ≈ and if it is <u>in</u> it is $\frac{1}{2}$ then $y \in F$, for all $x, y \in F$;

 $y \in F$, where $x \circ y \approx F$ means that $x \circ y \cap F \neq \emptyset$, for all *x,y* $\in H$. (ii) a *hyper filter*⁸ of *H* if $x \circ y \approx F$ and $x \in F$, then ∈ *H*.

Note that every hyper filter of a hyper BE-Note that every hyper filter of a hyper BE-algebra H is a weak hyper filter of H , but the converse is not true in general⁸. In this paper, we will focus on weak hyper filters of hyper BE-algebras.

Lemma 2.3 If $\{F_i: i \in I\}$ is a chain of a family of weak hyper filters of a hyper BE-algebra H , then $\mathop{\rm {}U\!}\nolimits_{i\in I}F_i$ is also a weak hyper filter of *H*. *i*∈*I*

Proof. Let $\bigcup_{i \in I} F_i$. Clearly, $I \in F$. Let $x, y \in H$ such that $x \, o \, y \subseteq F$ and $x \in F$. Then $x \, o \, y \subseteq F_i$ and $x \in F_i$ for some *i*,*j*∈*I*. Assume that $F_i ⊆ F_j$: It follows that *x o y* ⊆ F_j and *x*∈*F_j*. Since *F_j* is a weak hyper filter of *H*, we have $y \in$ $F_i \subseteq F$. Hence, *F* is a weak hyper filter of *H*.

A *fuzzy set*¹ of a nonempty set X is a mapping µ: *X* → [*0,1*]. Then, the set U(µ*;*α)={x∈X:µ(x)≥α} is called a *level subset* of μ *.* where $\alpha \in [0,1]$ *.* Let μ and ν be any two fuzzy sets of a nonempty set *X*. Then $\mu \leq v$, means

that μ (x)≤v(x), for all *x*∈*X*. In addition, the intersection for some μ and the union of μ and ν , denoted by $\mu \cap \nu$ and $\mu \cup \nu$, respectively, are defined by letting $x \in X$, $(\mu \cap \nu)$ (x)=min{ μ (x), v(x)} and (μ ∪*v*)(x)=max{ μ (x), v(x)}. $(x)=\min\{\mu(x), v(x)\}\$ and $(\mu\cup v)(x)=\max\{\mu(x), v(x)\}\$. and $\alpha<\mu(\lambda)$ d by $\mu \cap \nu$ and $\mu \cup \nu$ y letting $x \in X$, $(\mu \cap \nu)$ μ ¹ ν and μ σ $\int u(x) v(x)$ �∈�∘�

Results for all , ∈ .

In this section, we introduce the notion of fuzzy weak hyper filters of hyper BE-algebras, and we investigate some fundamental properties of fuzzy weak hyper filters in hyper BE-algebras.

Definition 3.1 A fuzzy set µ of a hyper BE-algebra *H* is called a *fuzzy weak hyper filter* of *H* if it satisfies the following conditions:

$$
(i) \mu(1) \ge \mu(x);
$$

(ii)
$$
\mu(x) \ge \min\{\inf_{z \in yx} \mu(z), \mu(y)\};
$$

for all $x, y \in H$.

Example 3.2 Let $H = \{1, a, b\}$ be a set with a hyperoperartion "o" on defined as follows:

\overline{O}		a		
	{1}	${a,b}$	${b}$	
a	{1}	$\{1,a\}$	$\{1,b\}$	
h	{1}	$\{1,a,b\}$	{]}	

Then, is a hyper BE -algebra 8 . We define a fuzzy set μ of *H* by μ (a) $\leq \mu$ (b) $\leq \mu$ (1). By routine computations, we have that μ is a fuzzy weak hyper filter of H .

Theorem 3.3 Let be a fuzzy set of a hyper BEalgebra H . Then μ is a fuzzy weak hyper filter of H if and only if its nonempty level subset $U(\mu;\alpha) = \{x \in H : \mu(x) \ge \alpha\}$ is a weak hyper filter of for all $\alpha \in [0,1]$.

Proof. Assume that μ is a fuzzy weak hyper filter of *H*. Let $\alpha \in [0,1]$ such that $U(\mu;\alpha) \neq \emptyset$. Then there exists $x_0 \in U(\mu;\alpha)$ such that $\mu(x_0) \geq \alpha$. Since $\mu(I) \geq \mu(x_0)$, $I \in U(\mu;\alpha)$. Let $x, y \in H$ such that $x \circ y \subseteq U(\mu; \alpha)$ and $x \in U(\mu; \alpha)$. Then $μ(z) ≥ α$, for all $z ∈ x o y$. Thus, $μ(y) ≥ min{inf_{z ∈ ω} μ(z), μ(x)} ≥ α$, $\mu(z) \ge \alpha$, for all $z \in x$ *oy*. Filus, $\mu(y) \ge \min\{\lim_{z \in x} \mu(z), \mu(x)\} \ge \alpha$, that is, $y \in U(\mu;\alpha)$. Hence, $U(\mu;\alpha)$ is a weak hyper filter of *H*.

Conversely, suppose that $\mu(I) \geq \mu(x_0) = \beta$ for some $\mathcal{X}_0 \in H$ and $\beta \in [0,1]$. Then $U(\mu;\beta) \neq \emptyset$, and so $U(\mu;\beta)$ is a weak hyper filter of *H*. It follows that $I \in U(\mu;\beta)$, which implies that µ(*1*)≥β. This is a contradiction. Thus, µ(*1*)≥µ(*x*), for all $x \in H$. Suppose that $\mu(a) < \min\{\inf_{x \in A} \mu(z), \mu(b)\}$ *z*∈*boa*

for some *a,b*∈*H*. Letting $\mu(b)$. . ome $a, b \in H$. Letting $\alpha = \frac{1}{2} \Big(\mu(a) + \min \Big\{ \inf_{z \in b \circ a} \mu(z), \Big\}$ $\{\}.$

 \vee , () weak hyper filter of *H*, we have $a \in U(\mu;\alpha)$, that is, $\mu(a) \ge \alpha$. We have $\mu(a) < a < \min\{\inf_{z \in ba} \mu(z), \mu(b)\} \le \inf_{z \in ba} \mu(z)$ and $\alpha<\!\!\mu(b)$. Then b o a \subseteq $U(\mu;\!\alpha)$ and b \in $U(\mu;\!\alpha)$. Since is a This is a contradiction. We obtain that $\mu(a) \geq \min \{ \inf_{z \in ba} \mu(z), \}$ $\mu(b)$ } for all *a,b*∈*H*. Therefore, μ is a fuzzy weak hyper filter of H . *z*∈*boa z*∈*boa* hyper litter of H , we have $a \in U(\mu, a)$, that is, $\mu(a) \ge a$.
is a contradiction Me obtain that $\nu(a)$ min $\int \nu(a) \cdot$

> **Corollary 3.4** If μ is a fuzzy weak hyper filter of a hyper BE-algebra *H*, then the set $H_a = \{x \in H : \mu(x) \ge \mu(a)\}$ is a weak hyper filter of *H* for all *a*∈*H*.

> **Corollary 3.5** If μ is a fuzzy weak hyper filter of a hyper BE-algebra *H*, then the set $H_{\mu} = {x \in H : \mu(x) = \mu(I)}$ is a weak hyper filter of H . $\frac{1}{2}$ is a weak hyper-filter of $\frac{1}{2}$ for an $\frac{1}{2}$.

> **Theorem 3.6** Let $F_{\iota} \subset F_{\iota} \subset \cdots F_{\iota} \subset \cdots$ be a strictly ascending chain of weak hyper filters of a hyper BE-algebra *H* and $\{t_n\}$ be a strictly decreasing sequence in $[0,1]$. Let μ be a fuzzy set of *H*, defined by $\mu(x)$ =

$$
\begin{cases}\n0 & \text{if } x \notin F_n \text{ for each } n \in \mathbb{N}; \\
t_n & \text{if } x \in F_n - F_{n-1} \text{ for } n = 1, 2, \dots;\n\end{cases}
$$

for all $x{\in}H$, where $F_{\overline{\theta}}\!\!=\!\!\varnothing$. Then μ is a fuzzy weak hyper filter of H .

Proof. Let $F = \underset{n \in \mathbb{N}}{U} F_n$. By Lemma 2.3, F is a weak hyper filter of *H*. Then $\mu(I)=t_1\geq \mu(x)$, for all $x\in H$. Let $x,y\in H$. Thus, we can divide to be two cases, as follows.

Case 1: $x \notin F$. Then $y \circ x \notin F$ or $y \notin F$. There exists $a \in y \circ x$ such that $x \notin F$. Thus, $\mu(a)=0$ or $\mu(y)=0$. Hence, $\min\{\inf_{z \in \mathbb{N}} \mu(z), \mu(y)\}.$ *z*∈*yox*

Case 2: $x \in F_n - F_{n-1}$ for some $n = 1, 2, ...$ Then *y* \circ *x* $\not\subseteq$ *F_{n-1}* or *y*∉*F*. Thus, there exists *a*∈*y* \circ *x* such that $a \notin F_{n-1}$. We obtain that, $\inf_{z \in \mathcal{X}} \mu(z) \le t_n$ or $\mu(y) \le t_n$. Therefore, $\min\left\{\inf_{z\in y\circ x}\mu(z),\mu(y)\right\}\leq t_n=\mu(x)$. Consequently, $(2e^{j\omega} \mu)$ is a fuzzy weak hyper filter of *H*.

The *cartesian product*¹⁴ of μ and ν is defined by $(\mu x \nu)$ Let μ and ν be fuzzy sets of a nonempty set X. $(x, y) = \min\{\inf_{z \in y} \mu(z), \mu(b), \text{ for all } x, y \in X.\}$ *z*∈*yox*

 $\sum_{z \in \mathcal{X}} P(z)$, $P(z)$, is defined in $\sum_{z \in \mathcal{Y}} P(z)$ μ and *v* are fuzzy weak hyper filters of *H*, then $\mu x v$ is a fuzzy weak hyper filter of $H x H$. **Theorem 3.7** Let *H* be a hyper BE-algebra. If

Proof. Assume that μ and ν are fuzzy weak hyper filters of H . Let $(x,y) \in H x H$. Then

 $(\mu \times \nu)(1, 1) = \min{\mu(1), \nu(1)} \ge \min{\mu(x), \nu(y)}$ $\beta \mu(x) +$ $= (\mu \times \nu)(x, y)$. Now, let $(x_1, y_2), (x_2, y_2) \in H \times H$. Then �∈�∘� �,� (μ, ν) (x_i, y_j) $= (\mu \wedge \nu)(\lambda, \gamma)$. No $\qquad \qquad (1)$

$$
= \min{\mu(x_1), \nu(y_1)}
$$

\n
$$
\geq \min{\min{\prod_{z_1 \in x_2 \circ x_1}} \mu(z_1), \mu(x_2)},
$$

\n
$$
\min{\min{\prod_{z_2 \in y_2 \circ y_1}} \nu(z_2), \nu(y_2)}
$$

\n
$$
\geq \min{\prod_{z_1 \in x_2 \circ x_1} \{\min{\mu(z_1), \nu(z_2)}\},
$$

\n
$$
\frac{z_2 \in y_2 \circ y_1}{z_2 \in y_2 \circ y_1}
$$

\n
$$
\min{\mu(x_2), \nu(y_2)}
$$

\n
$$
\geq \min{\sum_{(z_1, z_2) \in (x_2, y_2) \circ (x_1, y_1)} (\mu \times \nu) (z_1, z_2)}
$$

\n
$$
(\mu \times \nu)(x_2, y_2)
$$
.

Therefore, $\mu x y$ is a fuzzy weak hyper filter of $H x H$.
Therefore, $\mu x y$ is a fuzzy weak hyper filter of $H x H$.

Let be a fuzzy set of a nonempty set *X*, $\alpha \in [0,1-\alpha]$ of with res $\sup_{x \in X} \mu(x)$ and $\beta \in [0,1]$. Then: Let be a fuzzy set of a nonempty set X, $\alpha \in [0,1-\alpha]$ of with respectively f and the state of f . Let h e a function f *x*∈*X*

(i) the mapping $\mu^T a : X \to [0,1]$ is called a $\mu^T a : X \to [0,1]$ is called a fuzzy translation¹⁵ of μ if $\mu^T_a(x)=\mu(x)+a$, for all $x \in X$;

(i) μ is a fuzzy weak hyper-(i) the mapping $\mu^T_{a}: X \rightarrow [0,1]$ is calle fuzzy translation¹⁵ of μ if $\mu^T_a(x)=\mu(x)+a$, for all $x \in X$; (i) the mapping μ^T_a : $X \rightarrow [0,1]$ is called a (i) the

(ii) the mapping $\mu_{\beta}^{M}: X \rightarrow [0,1]$ is called a fuzzy multiplication¹⁵ of μ if $\mu^M_{\beta}(x)=\beta\mu(x)$, for all $x \in X$; (iii) μ^M_{β} is a fuz (ii) the mapping μ^{M}_{β} : $X \rightarrow [0,1]$ is called a (ii) μ^{M}_{α} is a fuzzy weak hy
(iii) μ^{M}_{α} is a fuzzy weak hy *fuzzy multiplication*¹⁵ of μ if $\mu^M{}_\beta(x) = \beta \mu(x)$, for all $x \in X$; (ii) the mapping $\mu^{M}{}_{\beta}$: $X \rightarrow [0,1]$ is called a

(iii) the mapping $\mu_{\beta,\alpha}^{MT}: X \to [0,1]$ is called a
filters of a hyper BEfuzzy magnified translation¹⁶ of μ if $\mu_{\beta,\alpha}^{MT}(x) = \beta \mu(x) + \alpha$, weak hy **Theorem 3.8** Let be a hyper BE-algebra, be a for all $x \in X$. fuzzy magnified translation¹⁶ of μ if $\mu_{\beta,\alpha}^{MT}(x) = \beta \mu(x) + \alpha$, filte
for all $\kappa \in Y$ **Theorem 3.8** Let $A \in \Lambda$, $wcan$ iiy all est en $\kappa \in X$. $f(x) = \int_0^x f(x) dx + \int_0^x f(x) dx$ (iii) the mapping $\mu_{B,\alpha}^{MT}: X \to [0,1]$ is called a fuzzy magnified translation¹⁶ of μ if $\mu_{\beta,\alpha}^{MT}(x) = \beta \mu(x) + \alpha$, iX . for all $x \in X$. $\lambda \in \Lambda$.

 $\ddot{}$, $\ddot{}$ **Theorem 3.8** a fuzzy set of $H \alpha \in [0, 1 - \sup \mu(x)]$ and $\beta \in$ a fuzzy set of *H*, $\alpha \in [0,1]$ sup $\mu(x)$ and $\mu \in [0,1]$.
Suppose that $\mu_{\beta,\alpha}^{MT}$ is a fuzzy magnified translation of μ , With respect to *α* and β. Then μ is a fuzzy weak hyper $\mu(\mu \cap \nu)(1) = \min{\mu(1), \nu(1)}$
 $\geq \min{\mu(x), \nu(x)} =$ (*μ* with respect to α and p . Then μ is a fuzzy weak is $\int_{r}^{t} p_{y} d\theta$, with respect to θ is $\int_{r}^{t} p_{y} d\theta$. Then $\int_{r}^{t} p_{y} d\theta$, with $\$ **Pro**
Theorem 3.8 Let H be a hyper BE-algebra, μ be
filters of a by translation of μ , $(\mu \cap \nu)(1) = m$ $\frac{3}{2}$ fuzzy weak hyper filter of \geq a fuzzy weak hyper filter of α a fuzzy set of *H*, $\alpha \in [0,1-\sup_{x \in H} \mu(x)]$ and $\beta \in [0,1-\min_{x \in H} \mu(x)]$ Suppose that $\mu_{\beta,\alpha}$ is a fuzzy magnified translation of then of H if and only if u^{MT} is a fuzzy weak byper fil $\mathsf{of} \ H.$ and $\beta \in [0,1]$. Suppose that fuzzy set of H, $\alpha \in [0,1-\sup_{x \in H} \mu(x)]$ Suppose that $\mu_{\beta,\alpha}^{MT}$ is a fuzzy magnified translation of μ , and only if $\mu_{\beta,\alpha}$ is a fuzzy weak
of H $\text{def}\$ and $\text{and}\$ the state of a fuzzy set of H, $\alpha \in [0,1-\sup_{x \in H} \mu(x)]$ and $\beta \in [0,1-\sup_{x \in H} \mu(x)]$ of H . of *H*. with respect to α and β . Then μ is a fuzzy weak hyper $\mu \cap \nu$ = min{ μ (1), ν (1)}
 $\mu \cap \nu$ = min{ μ (1), ν (1)} = min{ μ (x), ν (x)} = **Proper filter and** a fuzzy set of H, $\alpha \in [0,1-\sup \mu(x)]$ Suppose that $\mu_{\beta,\alpha}^{MT}$ is a fuzzy magnified to ,
, f a fuzzy set of H, $\alpha \in [0,1-\sup_{x\in H}\mu(x)]$ and $\beta \in [0,1]$.
Suppose that μ_{α}^{MT} is a fuzzy magnified translation of u. $\mathcal{L} = \mathcal{L} \mathcal{L}$ Γ Suppose that $\mu_{\beta,\alpha}^{MT}$ is a fuzzy magnified translation of μ , $(\mu \cap \nu)(1) = \min{\mu(1), \nu(1)}$ p of H . respect to α and β . Then μ is a fuzzy weak hyper $(\mu \cap \nu)$ **Provide that and and** θ a fuzzy set of H, G **Theorem 3.8** Let H be a l e a hyper BE-algebra, μ be $x \in H$
see that u^{MT} is a fuzzy meanifed translation of u of *H* if and only if $\mu_{\beta,\alpha}^{MT}$ is a fuzzy w **Proof.** Assume that is a fuzzy weak hyper filter of **Proof.** Theorem 3.8 Let *H* be a hyper BE-algebra, μ be $x \in \widetilde{H}$ $x \in \widetilde{H}$ $x \in \widetilde{H}$ $x \in \widetilde{H}$ and $p \in [0,1]$. $\ddot{}$ **Problem 5.6** Let H be a hyper BL-aigebia, μ be
 μ ext of $H \propto F \left[0.1 - \sin \mu(x) \right]$ and $R = [0.11]$ $\mu_{B,\alpha}^{MT}$ is a fuzzy magnified translation of μ,

Proof. Assume that μ is a fuzzy weak hyper filter $(\mu \cap \nu)(x) = m$ **Proof.** Assume that μ is a fuzzy weak hyper filter

of *H*. Let $a \in H$. Since $\mu(I) \ge \mu(a)$, we have $\mu_{\beta,\alpha}^{MT}(1) = \qquad \qquad \ge \min\{\min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\},\}$ $\beta\mu(1)+\alpha\geq\beta\mu(a)+\alpha=\mu^{MT}_{\beta,\alpha}(a)$, for all $a{\in}H$. Let $\beta\mu(1) + \alpha \geq \beta\mu(a) + \alpha = \mu_{\beta,\alpha}^{MT}(a)$, for all $a \in H$. Let $\min\{\inf_{z \in y \circ x} \nu(z), \nu(y)\}$ $\lambda, \lambda \in H$. Then
 $\overline{MT}(x) = 0$ $\overline{Q}(x) + \overline{Q}(x)$ **Proof.** Assume that μ is a fuzzy weak hyper filter $\mu(\mu \cap \nu)(x) = \min{\mu(x), \nu(x)}$
 $\mu^T(a) \ge \min{\min{\min{\min{\mu(z), \mu(y)}}}$ \mathcal{L} , \mathcal{L} + \mathcal{L} = \mathcal{L} = \mathcal{L} + \mathcal{L} = \mathcal{L} + \mathcal{L} = \mathcal{L} + \mathcal{L} = \mathcal{L} + $\$ of *H*. Let $a \in H$. Since $\mu(I) \ge \mu(a)$, we have $\mu_{\beta,\alpha}^{MT}(1) = \qquad \qquad \ge \min\{\min\{\inf_{z \in \mathcal{Y}^{\circ}x} \mu(z), \mu(z)\}$ $\beta\mu(1) + \alpha \geq \beta\mu(a) + \alpha = \mu_{\beta,\alpha}^{MT}(a)$, for all $a \in H$. Let min $\mu(\alpha)$ is $\mu_{\beta,\alpha}(\alpha)$ **Proof.** Assume that μ is a fuzzy weak hyper filter $\mu(x) = \min\{\mu(x), \nu(x)\}$
 $\geq \min\{\min\{\inf_{x \in \mathcal{X}} \mu(x)\}$ $f \circ \epsilon \sim \mu_{\beta,\alpha}(1)$ $\beta \mu(1) + \alpha \geq \beta \mu(a) + \alpha = \mu_{\beta,\alpha}^{\alpha}(a)$, for an $a \in H$. Let $x \vee \in H$. Then **Proof.** Assume that μ is a fuzzy weak hyper lifter

of *H*. Let $a \in H$. Since $\mu(I) \ge \mu(a)$, we have $\mu_{\beta,\alpha}^{MT}(1) =$ $\ge \min\{$ \overline{M} $\alpha > \beta u(a) + \alpha = u_n^M$, we have $r \beta u^{(2)}$.
 $\beta u(a) + \alpha = u_n^M$, for all $a \in H$. Let $\ddot{\theta}$, $\ddot{\theta}$, $\ddot{\theta}$ �,� �� () = () + $(\theta) + \alpha \geq \beta \mu(a) + \alpha = \mu_{B,\alpha}^{MT}(a)$, for all $a \in H$. Let

$$
\mu_{\beta,\alpha}^{MT}(x) = \beta \mu(x) + \alpha
$$

\n
$$
\geq \beta \min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\} + \alpha
$$

\n
$$
= \min\{\inf_{z \in y \circ x} (\beta \mu(z) + \alpha), \beta \mu(y) + \alpha\}
$$

\n
$$
= \min\{\inf_{z \in y \circ x} \mu_{\beta,\alpha}^{MT}(z), \mu_{\beta,\alpha}^{MT}(y)\}.
$$

 \cdots music, $\mu_{\beta,\alpha}$ is an $\sum_{z \in y \circ x^+} P, \alpha \leftrightarrow P, \alpha \leftrightarrow P,$ Hence, $\mu_{R,\alpha}^{MT}$ is a fuzzy weak hyper filter of H . Hence, $\mu_{\beta,\alpha}$ is a luzzy weak hyp $= \min_{z \in y \circ x} \mu_{\beta,\alpha}(z), \mu_{\beta,\alpha}(z)$
Hence, $\mu_{\beta,\alpha}^{MT}$ is a fuzzy weak hyper filter of Hence, �,� Fields, $\mu_{\beta,\alpha}$ is a fuzzy weak hyper-Hence, $\mu_{\beta,\alpha}^{MT}$ is a fuzzy weak hyper filter of H. $Hence$ μ^{MT} is a fuzzy weak ce, $\,\mu_{{\beta},\alpha}^{MT}\,$ is a fuzzy weak hyper filter of H .

 ϵ , and ϵ , ϵ and ϵ $= 50.105655$, assume that $r^2 \beta_i \alpha_i$.
hyper filter of H. Let $x, y \in H$. Consider $\mu_{\beta,\alpha}^{MT}(1) \ge \mu_{\beta,\alpha}^{MT}(x) = \beta \mu(x) + \alpha$ and $\mu_{\beta,\alpha}$ is a luzzy weak **Droof** by per filter of H. Let $x, y \in H$. Consider $\beta \mu(1) + \alpha = M^T (1)$. myper liner of *H*. Let $x, y \in H$. Consider $\beta \mu(1) + \alpha$
 $\mu_{\beta,\alpha}^{MT}(1) \ge \mu_{\beta,\alpha}^{MT}(x) = \beta \mu(x) + \alpha$ and Conversely, assume that $\mu_{\beta,\alpha}^{MT}$ is a fuzzy weak
Conversely, assume that $\mu_{\beta,\alpha}^{MT}$ is a fuzzy weak hyper filter of H. Let $x, y \in H$. Consider β $F_{\beta,\alpha}(\gamma) = F_{\beta,\alpha}(\gamma)$ p_r(α) is and Conversely, assume that $\mu_{\beta,\alpha}^{\beta,\alpha}$. myper filter of H. Let $x, y \in H$. Considering $\mu_{R,\alpha}^{MT}(1) \geq \mu_{R,\alpha}^{MT}(x) = \beta \mu(x) + \alpha$ and $\mu_{\beta,\alpha}^{MT}(1) \geq \mu_{\beta,\alpha}^{MT}(x) = \beta \mu(x) + \alpha$ and hyper filter of *H*. Let *x,y*∈*H*. Consider $\beta \mu(1) + \alpha =$ **Proof.** Assume that μ and μ a $\lim_{M \to \infty} E = \lim_{n \to \infty} E_n$ Consider $\beta \mu(1) +$ $\mu_{\beta}(\mu) \leq \mu_{\beta,\alpha}(\mu) - \mu(\mu) + \alpha$ and �∈�∘� �,� $= r \cdot p, u \cdot y \cdot p \cdot r \cdot y \cdot w \cdot y$

$$
\beta\mu(x) + \alpha = \mu_{\beta,\alpha}^{MT}(x)
$$

\n
$$
\geq \min\{\inf_{z \in y \circ x} \mu_{\beta,\alpha}^{MT}(z), \mu_{\beta,\alpha}^{MT}(y)\}
$$

\n
$$
= \min\{\inf_{z \in y \circ x} (\beta\mu(z) + \alpha), \beta\mu(y) + \alpha\}
$$

\n
$$
= \min\{\beta(\inf_{z \in y \circ x} \mu(z)) + \alpha, \beta\mu(y) + \alpha\}
$$

\n
$$
= \beta \min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\} + \alpha.
$$

Since $\beta > 0$ and $\alpha \ge 0$, we have $\mu(x) \ge \min\left\{\inf_{z \in y \circ x} g\right\}$ Fair $\lambda, \gamma \in \mathbb{H}$. Hence, μ is a $\{\},$ cince $\beta > 0$ and $\alpha > 0$, we $\mu(z), \mu(y)$ and $\mu(l) \ge \mu(x)$ $v)$ (z_1 , z_2), fuzzy weak hyper filter of *H*. ωe $\mu(x) > \min \frac{1}{x}$ inf α ll *x*,γ∈*H*. Hence, μ is a and μ (*I*)≥ μ (*x*), for all *x*,*y*∈*H*. Hence, μ is a Since $\beta > 0$ and $\alpha > 0$ we have $\mu(x) > \min \{ \inf$ $\Big\{z\Big(\bigvee\limits_{i=1}^N\mu(y)\Big\}$ and $\mu(I) \geq \mu(x)$, for all $x,y\in H$. Hence, μ is a

ر در در در **Corollary 3.9** Let *H* be a hyper BE-algebra, μ be a fuzzy set of H , $\alpha \in [0,1-\sup_{x \in X} \mu(x)]$, and $\beta \in [0,1]$. Suppose per filter of $H x H$.
that $\mu^T a$ is a fuzzy translation and is a fuzzy multiplication pect to and, respectively. Then the following $\mathbf g$ is a fuzzy translation and $\mathbf g$ $\ddot{\mathbf{z}}$ � is a fuzzy translation and conditions are equivalent: Let be a fuzzy set of a nonempty set , (0,1]. Suppose that � fual μ_a is a fuzzy diaristation and is a fuzzy maniphication
of with respect to and, respectively. Then the following \mathcal{A} �∈� fuzzy set of H , $\alpha \in [0,1-\sup_{x \in \mathbb{R}} \mu(x)]$, and $\beta \in [0,1]$. Suppose onditions are equ

a (i) μ is a fuzzy weak hyper filter of H ; H ;) μ is a fuzzy weak hyper filter of H ; r of H \cdot

 $\lim_{n \to \infty}$ (ii) μ_{a}^{T} is a fuzzy weak hyper filter of *H*;
is called a and r or H ; or all $x \in X$;
(ii) $\mu^T{}_a$ is a fuzzy weak hyper filter of H ; filter of H^+

all $x \in X$; (iii) μ_{β}^M is a fuzzy weak hyper filter of H. filter of H \mathcal{X} ; (iii) $\mu^M{}_\beta$ is a fuzzy weak hyper filter of H .

Theorem 3.10 If μ and ν are fuzzy weak hyper filters of a hyper BE-algebra *H*, then $\mu \cap v$ is a fuzzy weak hyper filter of H . μ and ν are following weak tryper $\frac{1}{2}$ for all $x \in X$;
 Theorem 3.10 If μ and ν are fuzzy weak hyper called a

filters of a hyper BE-algebra H, then $\mu \cap v$ is a filters of a hyper BE-algebra H, then $\mu \cap \nu$ is a \Box is called a
 \Box is called a $\beta \mu(x) + \alpha$, weak hyper filter of H . (i) is a fuzzy weak hyper filter of (i) \mathcal{L} α , weak hyper β angusta α ; [0,1] is called a

filters of a hyper BE-algebra H, then $\mu \cap v$ is a function of μ is a function of μ . $\frac{1}{2}$ is a fuzzy value of $\frac{1}{2}$. u is a fuzzy weak hyper filter u α , weak hyper filter of H. fers of a hyper BE-algebra H , then $\mu \cap v$ is a fuzzy reak hyper liiter of H . \mathbf{F} or \mathbf{H} .

Proof. Assume that μ and ν are fuzzy weak hyper filters of a hyper BE-algebra *H*. Let *x*,*y*∈*H*. Then are equivalent: filters of a hyper BE-algebra H . Let $x,y \in H$. Th $\frac{1}{2}$ is a fuzzy weak hypers filter of . are equivalent
Externa equivalent: \mathcal{L} is a fuzzy weak hypers filter of \mathcal{L} E-algebra, μ be
 \int and $\beta \in [0,1]$. filters of a hyper BE-algebra H. Let x, y **Then Proof.** Assume that μ and ν are fuzzy weak hyper $f(x)$ and $f(x)$ **Theorem 3.10** inters of a hyper BE-algebra H . Let and $\beta \in [0,1]$. $\overline{}$ **Proof.** Assume that μ and ν are fuzzy weak hyper ters of a hyper BE-algebra H . Let $x, y \in H$. Then Assume that μ and ν are fuzzy weak here. **Theorem 3.10** If $\frac{1}{2}$ is $\frac{1}{2}$ if $\frac{1}{2}$ and $\frac{1}{2}$ if $\frac{1}{2}$ if $\frac{1}{2}$ and $\frac{1}{2}$ if $\frac{1}{2$ $\sum_{i=1}^{n}$

Slation of
$$
\mu
$$
,

\n
$$
(\mu \cap \nu)(1) = \min{\mu(1), \nu(1)}
$$
\n
$$
\geq \min{\mu(x), \nu(x)} = (\mu \cap \nu)(x)
$$
\nhyper filter

\nand

and and $f_{\rm eff}$ and $f_{\rm eff}$ and $f_{\rm eff}$, then $f_{\rm eff}$ and $f_{\rm eff}$ a and a shi

$$
\begin{aligned}\n\text{back hyper filter} & \text{(}\mu \cap \nu)(x) = \min\{\mu(x), \nu(x)\} \\
&\in \mu_{\beta,\alpha}^{MT}(1) = \qquad \qquad \geq \min\{\min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\}, \\
&\in \min\{\inf_{z \in y \circ x} \nu(z), \nu(y)\}\} \\
&= \min\{\inf_{z \in y \circ x} \{\min\{\mu(z), \nu(z)\}\}, \\
&\mapsto \alpha \\
&= \min\{\inf_{z \in y \circ x} (\mu \cap \nu)(z), (\mu \cap \nu)(y)\} \\
&\in \mu(\nu) + \alpha\n\end{aligned}
$$

 $z ∈ y ∘ x$
 $\{A\}$ Hence, μ ∩ ν is a fuzzy weak hyper filter of *H*. and $\overline{\text{max}}$ we $(\beta \mu(y) + \alpha)$ Hence, $\mu \cap v$ is a fuzzy weak hyper filter of H.

Theorem 3.11 If μ and ν are fuzzy weak hyper order the set of a hyper BE-algebra *H* such that $\mu \subseteq \nu$ or $\nu \subseteq \mu$, of H. Then $\mu \cup v$ is a fuzzy weak hyper filter of H.
a fuzzy weak \vdots $\boldsymbol{\Pi}$ �∈�∘� $m_{\rm H}$ must so that in the model of \sim of H. filters of a hyper BE-algebra H such that $\mu \subseteq v$ or $v \subseteq \mu$, �∈�∘� \mathbf{r} or H . Figure $\mu \cup \nu$ is a fuzzy weak rigper filler or π .

Proof. Assume that μ and ν and are fuzzy weak hyper filters of a hyper BE-algebra *H* such that µ ⊆ *v* or �∈�∘� $v \subseteq \mu$. Let *x*, $y \in H$. Then myper inters of a hyper $DE - c$ hvner filters of a hvner BF^o \mathbf{F} for \mathbf{F} and \mathbf{F} and \mathbf{F} and \mathbf{F} are fuzzy weak $+\alpha =$ **Proof.** Assume that μ $(1) + u =$ hyper filters of a hyper BE-algebra H such the \mathcal{L} is a fuzzy weak hypers filter of . $\nu \subseteq \mu$. Let $x, y \in H$. Then fuzzy weak **Proof.** Assume that μ and ν and are fuzzy weak
(1) $\mu \alpha$ – **Theorem 3.10** is a fuzzy weak **hyperfuller of a hyper filter of a hyper filter of a hyper filter of** $\beta\mu(1) + \alpha =$ **ETOOT.** Assume that μ and ν and are fuzzy weak
hyper filters of a hyper BE-algebra H such that $\mu \subset \nu$ or T_{tot} is $\mu \leq r$ or $V \subseteq \mu$. Let $\lambda, \gamma \in H$. Then $\subseteq \mu$.

$$
(\mu \cup \nu)(1) = \max{\mu(1), \nu(1)}
$$

\n
$$
\geq \max{\mu(x), \nu(x)} = (\mu \cup \nu)(x).
$$

Now, \mathcal{L}

$$
(\mu \cup \nu)(x) = \max{\mu(x), \nu(x)}
$$

\n
$$
\geq \max{\min{\inf_{z \in y \circ x} \mu(z), \mu(y)}}.
$$

\n
$$
\min{\inf_{z \in y \circ x} \nu(z), \nu(y)}
$$

\n
$$
= \min{\max{\inf_{z \in y \circ x} \mu(z), \mu(y)}}
$$

\n
$$
\max{\inf_{z \in y \circ x} \nu(z), \nu(y)}
$$

\n
$$
= \min{\inf_{z \in y \circ x} {\max{\mu(z), \nu(z)}}}
$$

\n
$$
\max{\mu(y), \nu(y)}
$$

\n
$$
= \min{\inf_{z \in y \circ x} (\mu \cup \nu)(z), (\mu \cup \nu)(y)}
$$
.
\nIn general, $\max{\min{\min{\max{\mu(y), \nu(y)}}}$.

In general, $\max{\min\{\}\min\{\max\{\}\}.$ Suppose $\frac{1}{2}$ in general, $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ In general, $\max{\min{\}}$ min $\max{\}$). Suppo
for this case s case for this case $\mathfrak m$ general, $\max_{\{1,1\}}$

for this case
may \mathbf{S}

for this case
\n
$$
\max\{\min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\},\
$$
\n
$$
\min\{\inf_{z \in y \circ x} \nu(z), \nu(y)\}\}\
$$
\n
$$
\neq \min\{\max\{\inf_{z \in y \circ x} \mu(z), \mu(y)\},\
$$
\n
$$
\max\{\inf_{z \in y \circ x} \nu(z), \nu(y)\}\}.
$$
\nThen there exists $\alpha \in [0,1]$ such that
\n
$$
\max\{\min\{\inf_{z \in y \circ x} \mu(z), \mu(y)\},\
$$
\n
$$
\min\{\inf_{z \in y \circ x} \nu(z), \nu(y)\}\}\
$$
\n
$$
< \alpha < \min\{\max\{\inf_{z \in y \circ x} \mu(z), \mu(y)\},\
$$
\n
$$
\max\{\inf_{z \in y \circ x} \nu(z), \nu(y)\}\}.
$$

Thus, $\alpha < \min \left\{ \inf_{z \in y \circ x} \mu(z), \mu(y) \right\}$. On the other $\lim_{z \to \infty} \left(\frac{z \in y \circ x}{z \in y \circ x} \right)$ (2) which is completed the proof. . On the other hand, Thus, $\alpha < \min \{ \inf \mu(z), \mu(y) \}$. On the hand, $\min_{z \in y \circ x} \mu(z), \mu(y)$ < α , which is a contradiction. This completes the proof. , which is a contradiction. This completes the proof. us, $\alpha < \min \{\inf \mu(z), \mu(y)\}$. On the algel ,
 ompletes the proof. T_1 or ζ min $\Big(\inf_{x \in \zeta} u(x), u(x)\Big)$ other hand, $\min \left\{ \inf_{\gamma \in \mathcal{N}^{\alpha}} \mu(z), \mu(y) \right\} < \alpha$, which contradiction. This completes the proof. Thus $\alpha \leq \min \left\{ \inf_{u(x)} u(y) \right\}$ other hand, min $\begin{cases} \n\text{if } u(z), u(y) \leq \alpha, \text{ with } 0 \leq \alpha. \n\end{cases}$ contradiction. This completes the proof. Thus $\alpha \leq \min_{\alpha} \int \inf_{u(x)} u(y) dx$ other hand, $\min\left\{\inf_{z\in y\circ x}\mu(z), \mu(y)\right\}<\alpha$, where contradiction. This completes the proof. Thus, $\alpha < \min\{\min\{\mu(z), \mu(y)\}\}\$. On the ction. This completes the proof. Thus, $\alpha < \min \left\{ \inf_{z \in y \circ x} \mu(z), \mu(y) \right\}$. On the mand, $\min_{\{z \in \mathcal{Y} \times \mathcal{X}\}} \mu(y)$ $\leq \alpha$, which is a diction. This completes the proof. Thus, $\alpha < \min \{ \inf u(z), u(y) \}$. On the hand, $\min \left\{ \inf_{z \in y \circ x} \mu(z), \mu(y) \right\} < \alpha$, which is a doction. This completes the proof.

�∈�∘�

Then, we have the following corollary.
filters Then we have the following corollary

Corollary 3.12 Let $\{\mu_i : i \in \Lambda\}$ be a nonempty fuzzy weak hyper filters of a hyper **Corollary 3.12** Corollary 3.122 Beta non-matrice and R and R and R and R of a family of fuzzy weak hyper filters of a hyper filters of α Then, we have the following corollary. We have the following corollary \mathcal{L} set of a family of fuzzy weak hyper lifers of a hyper
BE-algebra H , where Λ is an arbitrary indexed set. Then the following statements hold: set of a family of fuzzy weak hyper filters of a hyper with $\frac{1}{2}$ with ⋃ or fuzzy weak hyper filters of a hype v of fuzzy weak hyper filters of a hy gebra H , where Λ is an arbitrary indexed set. the following statements hold:

 $\sum_{i \in \Lambda} \sum_{j=1}^{n}$ is an arbitrary indexed set. \mathbf{F} is the following statement of \mathbf{F} (i) $\bigcap_{i \in \Lambda} \mu_j$ is a fuzzy weak hyper filter of H; (ii) if $\mu_i \subseteq \mu_j$ or $\mu_j \subseteq \mu_i$ for all $i, j \in \Lambda$, then fit $\bigcap_{i\in\Lambda}\mu_j$ is a fuzzy weak hyper filter of H. (i) $\bigcap_{i\in\Lambda}\mu_j$ is a fuzzy weak hyper filter of H; (ii) if $\mu_i \subseteq \mu_j$ or $\mu_j \subseteq \mu_i$ for a

 $i \in \Lambda$.
Next, we denote by $FHF(H)$ the set of all fuzzy er filters of a hyper BE-algebra H . By Corollary obtain the following theorem. $\frac{1}{2}$ if $\frac{1}{2}$ for $\frac{1}{2}$ fo 3.12, we obtain the following theorem. weak hyper filters of a hyper BE-algebra *H*. By Corollary
2.42 we obtain the following theorem (per litters or a riyper $B = \text{arg}$ and B . By Corollary $\ddot{}$ Is a fuzzy weak hyper filter of H .
Next, we denote by $E I E \langle II \rangle$ the est of ell. i ivext, we denote by $PID(II)$ the set or all then hyper filters of a hyper BE-algebra H . By Corolla

Theorem 3.13 Let *^H*be a hyper BE-algebra and $(fHF(H); \subseteq)$ be a totally ordered set by the set inclusion. Then *(FHF(H);*⊆,∨,∧) is a complete lattice, where τ be a total Ω 13 Let U be a hyper BE-algebra and τ

$$
\wedge \{ \mu_i \in FHF(H) : i \in \wedge \} = \bigcap_{i \in \Lambda} \mu_i,
$$

$$
\vee \{ \mu_i \in FHF(H) : i \in \wedge \} = \bigcap_{i \in \Lambda} \mu_i.
$$

 $(FHF(H); \subseteq)$ be a totally ordered set. Then $\mu \cap (\nu \cup \lambda)$ = $U(\mu \cap \lambda)$ and $\mu \cup (\nu \cap \lambda) = (\mu \cup \nu) \cap (\mu \cup \lambda)$, **Theorem 3.14** Let *H* be a hyper BE-algebra and **COVECT** and \overline{C} $(\mu \cap \nu) \cup (\mu \cap \lambda)$ and $\mu \cup (\nu \cap \lambda) = (\mu \cup \nu) \cap (\mu \cup \lambda)$, for all $\mu, \nu, \lambda \in FHF(H)$. **Lemma 3.14** Let *H* be a hyper BE-algebra and **CH** ⊏ $\left(\frac{1}{2}\right)^{2}$ (μ a) dia μ \in (μ a) the set μ the set μ $HF(H): \subseteq$) be a totally ordered set. Then $\mu \cap (\nu \cup \lambda) =$

 $\mu, \nu, \lambda \in H H^1(H)$.

Proof. Let $\mu, \nu, \lambda \in I$ **Proof.** Let $\mu, v, \lambda \in FHF(H)$ and $x \in H$. The (x) $L(x)$ (x) **Proof.** Let μ , ν , $\lambda \in FHF(H)$ and $x \in H$. Then $(\mu \cap (\nu \cup \lambda))$ (x) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Proof. Let $\mu, \nu, \dot{\nu}$ $\mathcal{L}(\mathcal{O})$ (x)

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\nu\{u(x), \text{max}\{v(x), \lambda(x)\}\}\n$ $= max\{min\{\mu(x), \nu(x)\}, min\{\mu(x), \lambda(x)\}\}\$ $= max\{(\mu \cap v)(x), (\mu \cap \lambda)(x)\}$ $= min{\mu(x), (\nu \cup \lambda)(x)}$ $=min{\mu(x), max{\nu(x), \lambda(x)}}$ = $max{min{ \mu(x), \nu(x), min{ \mu(x), \lambda(x) } } }$ $= max\{(\mu \cap \nu)(x), (\mu \cap \lambda)(x)\}\$ � ∩ (∪)�() $= max{(\mu \cap v)(x), (\mu \cap \lambda)(x)}$ $\frac{1}{\sqrt{2}}$ � ∩ (∪)�() ⋁{� ∈ ℱℋℱ() ∶ ∈ Λ} = ⋃ L mar^f min^f $\mu(r)$ $\nu(r)$ min^f $\mu(r)$ $\lambda(r)$ $\equiv max\{(\mu(y)(x), (\mu(y))(x)\})$ $\mathcal{L} = min\{\mu(x), max\{v(x), \lambda(x)\}\}\$ $-max\{mn\}$ $\mu(x)$, $\nu(x)$ γ , $mn\{ \mu(x)$, $\nu(x)$ $\}$ γ $= max_{\{ \mu \nu \}} (x), (\mu \nu)(x)$

 $= ((\mu \cap \nu) \cup (\mu \cup \lambda))(x).$ $= ((\mu \cap \nu) \cup (\mu \cup \lambda))(x).$ $=(({\cup} \cap v) \cup ({\cup} \lambda))({x}).$

Hence, $\mu \cap (\nu \cup \lambda) = (\mu \cap \nu) \cup (\mu \cap \lambda)$. over that $\mu \cup (\nu \cap \lambda) = (\mu \cup \nu) \cap$ $(\mu_0, \nu) \in (\mu_0, \nu)$, $(\nu_1, \nu_2) \in (\mu_1, \nu_1)$ $f(x) = f(x) - f(x)$
a prove that $f(x) = f(x)$ Hence, $\mu \cap (\nu \cup \lambda) = (\mu \cap \nu) \cup (\mu \cap \lambda)$. Similarly, we can prove that $\mu \cup (\nu \cap \lambda) = (\mu \cup \nu) \cap (\mu \cup \lambda)$. $\frac{1}{\sqrt{1-\frac{1$ $\lim_{\mu \to \infty} \mu \in (n - \mu)$ $Hence, \Pi \cap (\nu \cup \lambda) = (\Pi \cap \nu) \cup (\Pi \cap \lambda)$ for all $\mu \cup (\nu \cap \lambda) = (\mu \cup \nu \cap \lambda)$ $= ((\mu \nu) \circ (\mu \circ \kappa))^{(\lambda)}$.

From Lemma 3.14, we have the following **Proof.** Let us a set of $\frac{1}{2}$ and $\frac{1}{2}$ we have the follow theorem. From Lemma 3.14, we have the following \overline{a} (neorem. meorem. **Profit Letting 0.11, we have the following** From Lemma 3.14, we have the follow \overline{O} (\overline{O}) \overline{O}

 $\overline{ }$ integrent 3.15 Let be a hyper- α ordered set. Then is a distribution Theorem 3.15 Let be a hyper BE-al be a totally ordered set. Then is a distributed $\frac{1}{\sqrt{2}}$ $=$ min $($ $=$ $)$ Theorem 3.15 Let be a hyper BE-algebra and \blacksquare matrice. reform 3.15 Let be a hyper BE-algebra and
be a totally ordered set. Then is a distributive complete theorem. attice . lattice. $\frac{1}{\sqrt{2}}$ $=$ max $=$ min $=$ $\frac{1}{\sqrt{2}}$, min $\frac{1}{\sqrt{2}}$, min $\frac{1}{\sqrt{2}}$, min $\frac{1}{\sqrt{2}}$, min $\frac{1}{\sqrt{2}}$ = maximal contracts and mink of a minimizes comp
() $=$ $\frac{1}{\sqrt{2}}$, $\frac{1}{\$

Next, we characterize Noetherian hyper BEthe algebras and Artinian hyper BE-algebras using their fuzzy \overline{a} weak hyper filters. $=$ $\frac{1}{\sqrt{2}}$, $\frac{1}{\$ = max{(∩)(), (∩)()} $\frac{1}{2}$ Hence, ∩ (∪) = (∩) ∪ (∩). Next, we characterize N ebras and Artinian nyper BE-algebras using the

A hyper BE-algebra H is c \sim the ascending chain condition on weak hyper From $F \subset F$ similar
Album an PE almalana 33.14, we have that have the following the following N nyper BE-algebra *H* is called *Noetherlan* if *I*
Satisfies the ascending chain condition on weak hype filters, that is, for any weak hyper filters F_1, F_2, F_3, \dots of H, theorem.
 x_1 with $F_1 ⊆ F_2 ⊆ F_3 ⊆ … ⊆ F_1 ⊆ …$ A hyper BE-algebra *H* is called *Noetherian* if *H*

Similarly, we can prove that prove that satisfies the ascending chain condition on weak hyper \mathbb{R} in each model.
A hyper BE-algebra H s, for any weak hyper filters F_1, F_2, F_3, \dots of H , h $F_1 \subseteq F_2$

There with $F_i \subseteq F_2 \subseteq F_3 \subseteq ... \subseteq F_i \subseteq ...$

set. There exists $n \in \mathbb{N}$ such that $F_i = F_i + I$ for all $i \ge$ $\mathfrak{n}.$ A hyper BE-algebra is called *Noetherian* $n.$ There exists $n \in \mathbb{N}$ such that $F_i = F_i + I$ for all $i \ge$

n.

A hyper BE-algebra H is called Artinian if H s the descending chain condition on weak hyper ulat is,
 $- E$ (The a total ordered in the set of satisfies the descending chain condition on weak hyper then filters, that is, for any weak hyper filters F_i, F_j, F_j, \ldots of H_i with $F_j \subseteq F_2 \subseteq F_j \subseteq \dots \subseteq F_i \subseteq \dots$ H ; A hyper BE-algebra H is called Artinian if H filters, that is, for any weak hyper filters F_1, F_2, F_3, \ldots of H , (\overline{A} hyper BE-algebra H is called Artinian if H ers, tha \subseteq $F_j \subseteq \ldots \subseteq F_i \subseteq \ldots$

 $\sum_{n=1}^{\infty}$ characterize $\sum_{n=1}^{\infty}$ characterize $\sum_{n=1}^{\infty}$ and $\sum_{n=1}^{\infty}$ BE-algebras and Artinian hyper BE-algebras using $\begin{aligned} \mathsf{IZzy} \qquad \qquad & \mathsf{There\ exists\ n \in \mathbb{N} \ such \ that \ } F_i = F_i + I \ \text{for all} \ i \geq 0 \end{aligned}$ $\frac{1}{n}$. *n*. There exists $n \in \mathbb{N}$ such that $F_i = F_i + I$ for all $i \geq$

 \mathbb{R}^n the set of of \mathbb{R}^n the set of \mathbb{R}^n Theorem 3.16 Let H be a hyper BE-algebra. herian if and only if for every fuzzy weak A hyper BE-algebra is called *Noetherian* hyper filters, that is, for any weak hyper filters . By Corollary 3.12, we obtain the following \mathcal{L} Then *H* is Noetherian if and only if for every fuzzy weak Next, we denote by \mathcal{N} the set of of \mathcal{N} $\sum_{n=1}^{\infty}$ Theorem 2.16 Let H k **EXECTED BE-algebra BE-algebra 1**
Noetherian if and only if for every fuzzy weak if α satisfies the ascending chain condition on α

 \sqrt{a} for every function \sqrt{a}

hyper filter μ of H, the set $Im(\mu) = {\mu(x):x \in H}$ is a well-
(ii) \Rightarrow (i): Assume ordered subset of $[0,1]$. 0.1].

Proof. Assume that H is Noetherian. Suppose that there exists a fuzzy weak hyper filter μ of H such μ = μ = that Im(μ) is not a well-ordered subset of [0,1]. Then there $F_i \subset F$ exists a strictly infinite decreasing sequence $\{t_n\}_{n=1}^\infty$ fuzzy set μ of H by such that $\mu(x_n) = t_n$ for some $x_n \in H$. Let $I_n = U(\mu; t_n) = \{x \in H:$ for all new Moreover, $I_1 \subset I_2 \subset I_3 \subset ...$ is a strictly infinite
for all new Moreover, $I_1 \subset I_2 \subset I_3 \subset ...$ is a strictly infinite ascending chain of weak hyper filters of *H*. This is a contradiction that *H* is Noetherian. Therefore, $Im(\mu)$ is a where $F_{\theta} = \emptyset$. By The $\mu(x) \ge t_n$. By Theorem 3.3, I_n is a weak hyper filter of H,
for all a s³⁰. Margavax $I = I = I$ is a strictly infinite well-ordered subset of $[0,1]$, for each fuzzy weak hyper filter μ of H . where \mathbf{r} is \mathbf{r} is the set Im() \mathbf{r} in \mathbf{r} is the set Im() \mathbf{r} in \mathbf{r} is the set Im() \mathbf{r} \sin that H is Noetherian Suppose such the fuzzy weak hyper filter μ of H suc α contradiction that *H* is Noetherian. Therefore, $Im(\mu)$ is a for $\frac{1}{2}$ of $\begin{bmatrix} 0 & 1 \end{bmatrix}$ for each fuzzy weak dered subset of $[0,1]$, for each fi T_{m} exists μ or H . **Corollary 3.17** Let \mathcal{L} **Corollary 3.17** Let \mathcal{L} for a hyper BE-algebra. If \mathcal{L}

Then there exists a strictly infinite ascending chain equivalent: $F_1 \subset F_2 \subset F_3 \subset \ldots \subset F_n \subset \ldots$ of weak hyper filters of *H*. We $\qquad \qquad$ (i) *H* is Artinian; Conversely, assume that for every fuzzy weak hyper filter μ of *H*, the set $Im(\mu) = {\mu(x): x \in H}$ is a $T = {t_1, t_2, ...\}\cup {0}$ well-ordered subset of . Suppose that is not Noetherian. define the fuzzy weak hyper filter of μ of H by $\ddot{}$ $\ddot{}$ α α β β β $f_{\rm eff}$ each ϵ y weak \overline{T} . $F_1 \subseteq F_2 \subseteq F_3 \subseteq ... \subseteq F_n \subseteq ...$ or weak nyper niters or $\frac{1}{2}$ is a well-ordered subset of $\frac{1}{2}$. in **c**quivalents:

$$
\mu(x) = \begin{cases} 0 & \text{if } x \notin F_n \\ \frac{1}{n} & \text{if } x \in F_n - F_{n-1} \text{ for } n = 1, 2, \dots; \end{cases}
$$

where $F_0 = \emptyset$. By Theorem 3.6, μ is a fuzzy
Supper weak hyper filter of H , but $Im(\mu)$ is not a well-ordered \sim \overline{a} subset of [0,1]. We get a contradiction. Consequently, $H = \frac{W}{U}$ is Noetherian. **Corollary 3.17 Corollary 3.17** \Box is Noetherian.

Corollary 3.17 Let *H* be a hyper BE-algebra. If for every fuzzy weak hyper filter μ of H such that $\text{Im}(\mu)$ $\frac{1}{2}$ is a finite set, then *H* is Noetherian. **Euronary 3.17** Let *H* be a hyper BE-aigebra. If μ of *H*, which is a contradiction that μ for every fuzzy weak hyper filter μ of *H* such that $\text{Im}(\mu)$

Theorem 3.18 Let H be a hyper BE-algebra and $T = \{t_1, t_2, ...\} \cup \{0\}$, where $\{t_n\}_{n=1}^{\infty}$ is a strictly decreasing in $[0,1]$. Then the following conditions are equivalent:

 (i) *H* is Noetherian;

(ii) for every fuzzy weak hyper filter μ of *H*, $f \log \theta$ if Im(μ) \subseteq T, then there exists $k \in \mathbb{N}$ such that $Im(\mu) \subseteq \{t_1, t_2, \ldots, t_k\}$ $\mu(x) = \begin{cases} 0 & \text{if } x \notin F_1, t_k \\ t_n & \text{if } x \in F_n - F_{n+1} \\ 1 & \text{if } x \in F_n \end{cases}$ *t*₂, ..., *t*_k}∪{0}. \mathcal{P} μ of H ,

Proof. (i) \Rightarrow (ii): Assume that *H* is a Noetherian. Let μ be a fuzzy weak hyper filter of H such that $\text{Im}(\mu)$ \subseteq T. By Theorem 3.16, $\text{Im}(\mu)$ is a well-ordered subset of [0,1]. Hence, there exists $k \in \mathbb{N}$ such that $Im(\mu) \subseteq \{t_1, t_2, \ldots, t_n\}$ \mathbb{R}^2 . By Theorem 3.16, Implies we have the set of \mathbb{R}^2 *..., t_k*}∪{0}. \ldots, ℓ_k \cup \cup \cup \cdot \mathbf{a} Noetherian \overline{t} $n(\mu) \subseteq \{t_1, t_2\}$ subset \overline{I}

 Lipper and μ or H , μ mapping μ or H , μ mapping μ or H , μ and μ and μ are μ and μ are μ and μ are μ ar original, suppose the continuum μ \equiv σ _{*p*}, σ _{*p*}, σ <sub>*c*</sup>_{*p*}, σ <sub>*c*</sup>_{*p*}, σ ² σ _{*c*} σ ² σ of [0,1]. Then there $F_1 \subset F_2 \subset F_3 \subset ...$ of weak hyper filters of H. We define a (ii) \Rightarrow (i): Assume that for every fuzzy weak hyper filter μ of *H*, if Im(μ) \subseteq T, then there exists $k \in \mathbb{N}$ \int_1 fuzzy set μ of *H* by

$$
H:
$$

\n
$$
\mu(x) = \begin{cases} 0 & \text{if } x \notin F_n \\ t_n & \text{if } x \in F_n - F_{n-1} \text{ for } n = 1, 2, \dots; \end{cases}
$$

\n
$$
\mu(x) = \begin{cases} 0 & \text{if } x \in F_n - F_{n-1} \text{ for } n = 1, 2, \dots; \end{cases}
$$

Tuzzy weak hyper
tion. Therefore, H is Noetherian. lore, $Im(\mu)$ is a writter \int_{0}^{∞} . By medicing 5.0, μ is a razzy weak
zy weak hyper hyper filter of H. This is a contradiction with our assumpa

every $F_0 = \emptyset$. By Theorem 3.6, μ is a fuzzy weak

every filter of $H_0 = \emptyset$. By Theorem 3.6, μ is a fuzzy weak $\mathbf{F} - \varnothing$ By Theorem 3.6 μ is a fuzzy weak

 $\frac{1}{2}$
Theorem 3.19 Let H be a hyper BE-algebra and r every fuzzy weak
= { $\mu(x): x \in H$ } is a
 $T=\{t_1, t_2, ...\} \cup \{0\}$, where $\{t_n\}_{n=1}^{\infty}$ is a strictly increasing $\frac{k}{n+1}$ is a
loetherian. sequence in [0,1]. Then the following conditions are اب
ا if if T_{heat} ∪,⊥ j. ⊥⊔icii ur $=$ $\frac{1}{1}$ io a calcay ... f_1 is a
sequence in [0,1]. Then the following conditions are
 f_1 sequence in [0,1]. Then the following conditions are equivalent: \Box Fry fuzzy weak **Theorem 3.19** Let H be a hyper BE-algebra and where $\{t_n\}_{n=1}^{\infty}$ is a strictly increasing Hence, is a fuzzy weak hyper filter of . We

H . We (i) *H* is Artinian;

if $\text{Im}(\mu) \subseteq T$, then there exists $k \in \mathbb{N}$ such that $\text{Im}(\mu) \subseteq$ for each $n \in \mathbb{N}$; $\{t_1, t_2, ..., t_k\} \cup \{0\}$. (ii) for every fuzzy weak hyper filter μ of H , $\frac{1}{2}$ is $\frac{1}{2}$ H by (ii) for every fuzzy weak hyper filter μ of H , Iter μ of H , \cup {0}.

for $n = 1, 2, ...$;
Proof. (i) \Rightarrow (ii): Assume that *H* is Artinian. Let $U(\mu; t_{i_m})$ for $m=1, 2, ...$ Th g sequence on ∘
∖for sta μ be a fuzzy weak hyper filter of H such that Im(μ) \subseteq T.
a fuzzy $\frac{1}{2}$ The such that the such that $\lim_{m \to \infty} \frac{1}{m}$ is a fuzzy suppose that $t_{i_1} < t_{i_2} < \cdots < t_{i_m} < \dots$ is a strictly a well-ordered increasing aggregate of almost in $\lim_{m \to \infty}$ is a strictly bisequently, H $U(\mu; t_{i_m})$ for $m=1,2,...$ This implies that $I_1 \supset I_2 \supset ... \supset I_m$ \cup (μ , ι_{lm} , is $m=1,2,...$ This implies that $I_1 \supseteq I_2 \supseteq ... \supseteq I_m$
 $\supseteq ...$ is a strictly descending chain of weak hyper filters gebra. If μ of *H*, which is a contradiction that *H* is Artinian. **Proof.** (i) $\sum_{i=1}^{n}$ (ii) Assume that $\sum_{i=1}^{n}$ a well-ordered
increasing sequence of elements in $\text{Im}(\mu)$. Let $I_m =$ **Corollary 3.20** Let be a hyper BE-algebra. If for **Proof.** (i) \Rightarrow (ii): Assume that H is Artinian. Let ⇒ ... is a strictly descending chain of weak hyper filters $\frac{1}{2}$ nat $t_{i_1} < t_{i_2} < \cdots < t_{i_m} < \dots$ is a strictly sequence of elements in $\text{Im}(\mu)$. Let $I_m =$

at Im(μ) $(ii) \Rightarrow (i)$: Assume that for every fuzzy weak hyper filter μ of H , if $\text{Im}(\mu) \subseteq I$, then there exists ctly decreasing not Artinian. Then there exists a strictly descending chain equivalent: $F_1 \supset F_2 \supset \dots \supset F_n \supset \dots$ of weak hyper filters of *H*. We define a fuzzy set μ in H by hyper filter μ of H, if Im(μ) \subseteq T, then there exists $k \in \mathbb{N}$ a and such that $\text{Im}(\mu) \subseteq \{t_1, t_2, ..., t_k\} \cup \{0\}$. Suppose that *H* is $\mathsf{EXISIS}\ K \in \mathbb{N}$ for near ϵ is a distribution of ϵ $\frac{1}{2}$ is not Artinian. Then the exists and the exists are existence exists and $\frac{1}{2}$ are existence exists and $\frac{1}{2}$ are existence of $\frac{1}{2}$ and $\frac{1}{2}$ are exists and $\frac{1}{2}$ are exists and $\frac{1}{2}$ ar hyper BE-algebras and Artinian hyper BE-algebras

er inter
$$
\mu
$$
 or H ,
\n
$$
\mu(x) = \begin{cases}\n0 & \text{if } x \notin F_1, \\
t_n & \text{if } x \in F_n - F_{n+1} \\
1 & \text{if } x \in F_n\n\end{cases}
$$
 for $n = 1, 2, ...,$
\nfor all $n \in \mathbb{N}$.

 $x, y \in H$. Thus, we can divide to be three cases We have that $\mu(I) = 1 \ge \mu(x)$, for all $x \in H$. Next, let ∉ �, *x*,y∈*H*. Thus, we can divide to be three cases, as follows.

of $\begin{array}{ll} \textsf{Case 1:} \; x \not\in F, \; \textsf{Then} \; y \mathbin{\circ} x \not\in F, \; \textsf{O} \end{array}$ h_{2} , thus, the contradiction with our contradiction with our contradiction \mathcal{L} Thus, Case 1: $x \notin F_1$. Then $y \circ x \notin F_1$ or $y \notin F_1$. ∈ � − ���

Case 2: $x \in F_n - F_{n+1}$ for some $n=1,2,...$. Then $y \circ x \nsubseteq F_{n+1}$ or $y \notin F_{n+1}$. We obtain that $\mu(y) \le t_n$ or $\mu(z)$ ≤ t_n for some $z \in y \circ x \circ F_{n+1}$. So, $\min\{\inf_{z \in y, x} \mu(z), \mu(y)\}$ ≤ $t_{n} = \mu(x)$..

Case 3: $x \in F_n$ for all $n \in \mathbb{N}$. Clearly, $\mu(x) =$ $1 \geq min$ { $\inf_{z \in y.x} μ(z), μ(y)$ }.

Hence, µ is a fuzzy weak hyper filter of *H*. We have a contradiction with our assumption. Consequently, *H* is Artinian.

Corollary 3.20 Let *H* be a hyper BE-algebra. If for every fuzzy weak hyper filter μ of H , Im(μ) is a finite set, then *H* is Artinian.

Conclusions

The concept of fuzzy weak hyper filters in hyper BE-algebras is introduced and investigated. It was shown that the set of all fuzzy weak hyper filters of hyper BE-algebras is a distributive complete lattice. Also, the concepts of Noetherian hyper BE-algebras and Artinian hyper BE-algebras are characterized by their fuzzy weak hyper filters. In future work, we will study the concept of characterizations of fuzzy weak hyper filters in hyper BE-algebras.

References

- 1. Zadeh LA, Fuzzy sets*, Information and Control***1965** ; *8(3)*: 338-353.
- 2. Kim HS, Kim YH. On BE-algebras, Scientiae Mathematicae Japonicae 2007 ; 66(1): 113-116.
- 3. Imai Y, Iséki K. On axiom systems of propositional calculi XIV, Proceeding of the Japan Academy 1966 ; 42: 19-22.
- 4. Iséki K. An algebra related with a propositional calculus, Proceeding of the Japan Academy 1966 ; 42: 26-29.
- 5. Song SZ, Jun BY, Lee KJ. Fuzzy ideals in BE-algebras, Bulletin of the Malaysian Mathematical Sciences Society 2010 ; 33(1): 147-153.
- 6. Dymek G, Walendziak A. Fuzzy filters of BE-algebras, Mathematica Slovaca 2013 ; 63(5): 935-945.
- 7. Marty F. Sur une generalization de la notion de group, Proceeding of 8th Congress des Mathematician Scandinave 1934 ; 45-49.
- 8. Radfar A, Rezaei A, Borumand Saeid A. Hyper BE-algebras, Novi Sad of mathematics 2014 ; 44(2): 137-147.
- 9. Cheng XY, Xin XL. Filter theory on hyper BEalgebras, Italian Journal of Pure and Applied Mathematics 2015 ; 35: 509-526.
- 10. Corsini P. Prolegomena of hypergroup theory. USA: Aviani Editore ; 1993.
- 11. Vougiouklis T. Hyperstructures and their representations. USA: Handronic Press inc. ; 1994.
- 12. Corsini P, Leoreanu V. Applications of hyperstructures theory Advances Mathematics. Dordrecht: Kluwer Academic Publishers: 2003.
- 13. Davvaz B, Leoreanu-Fotea V. Hyperring theory and applications. USA: International Academic Press ; 2007.
- 14. Bhattaccharya P, Mukherjee NP. Fuzzy relation and fuzzy groups, *Information and Sciences* **1985** ; *36*: 267-282.
- 15. Vasantha Kandasamy WB. Smarandache fuzzy algebra. Rehoboth: American Research Press; 2007.
- 16. Sardar SK, Majumder SK. Fuzzy magnified translation on groups, Journal of Mathematics 2008 ; 1(2): 117-124.