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Particles in Bound State System under the Lennard-Jones Potential by Using Finite
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Abstract

This paper aims to present a calculation of energy levels of (12-6) Lennard-Jones potential of the quantum mechanical
system of the bound state problem by using finite difference methods (FDMs) with a truncation error O (hz) for
constructing a proper Hamiltonian matrix and calculating the eigenvalues (1) and eigenvectors (¥) from this matrix.
The interaction potential between two-particle system in the atom is in the kind of attraction and repulsion. As a result,
we represent the energy in each level through a unitless energy parameter (&) and the radial probability distribution
of energy levels is also presented. Moreover, we also illustrate graphs of radial probability distribution with respect to

the distance in each energy level.
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Introduction
The interaction at quantum scale between two atoms is

often described by the Lennard-Jones potential™:

v(r)=u[(re/V)Zk—(re/r)k}, (1)
where u:hzo'/Zmrf, #i is the Plank’s
constant divided by 277, m stands for the reduced mass
of two atoms and 7, is the equilibrium distance or the
classical turning point of atoms which is the minima of
interaction potential. The ¢ is the intensity parameter of
this potential, as in the bound state energies are defined
the intensity range of =0. The term that stands for
the attractive part is r* and the repulsive term is
represented by 7. The exponents of 2k and k
represent the short and long range parts of the potential.

These are divided into three different values, i.e.,
with k& = 4 for the case of interaction between atom and
ion collision®®, and & = 6 for the two neutral atoms (the
usual Lennard-Jones potential) or a familiar van der Waals
potential’, and & =7 for two retarded atoms potential as
known as the Casimir-Polder potential between two
neutral polarizable atoms®.

To explain the interaction between two-atom
problems in the quantum point of view, for the simple
case, we deal with the Schrédinger equation which is the
equation of motion for the quantum system. It is difficult
to solve the exact solution from the equation of motion
which is always expressed by a second-order differential
equation. Many problems reduce to the coefficients of a

9-11

polynomial or to the Frobenius method™ . We can

evaluate an analytical solution as well as the numerical

method to solve the problem '*™

. In this paper, we show
how to solve the Schrédinger equation numerically by
using a finite difference method with a specific interaction,
namely the Lennard-Jones potential. The latter potential
is expected to be an interaction potential in the reversed
process of making a bound state for the atomic layer
deposition thin film technique for our future work. So our

present study will be beneficial for that future project.
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The formalism and method
In order to analyze a spherically symmetric system we

write the general form of Hamiltonian as

Hy=Ly. @)
and for
~2 r2
=L 4 L >+V,
2m  2mr 3)

where jg stands for the linear momentum
operator, i is the angular momentum operator and [}
is for the interaction potential. The (12-6) Lennard-Jones
potential can be expressed in term of the radius as
(numbers in round bracket are the exponent of two terms

in square bracket respectively)
hZO' " 12 . 6
M=o {(7) ) )

where M s the reduced mass of two particles,
' represents the relative distance between the particles,
" is the equilibrium distance or the classical turning point
and O stands for the intensity parameter of the potential.
The bound state energies, which are defined by the
angular momentum quantum number ’, are shown in
figure 1 for various values of its angular momentum. The
relation of potential (V") and the relative distance (7")
following from eq. (4) is shown in Figure 2.

Substituting eq. (4) into the Hamiltonian eq. (3)
leads to the Schrodinger equation; then, we use the
separation of variables method to define the wave
functions in term of radius, azimuthal and horizontal

angles as
¥(7,0,4)=R(r)0(6)D(g). (5)

This method is very useful in the spherical
symmetry. Following this assumption, we obtain the
partial differential equations including of radial and

spherical harmonic wave functions. The equation of
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motion that is obtained in the radial wave function with

the spherical symmetry is shown as follows.

ENTI .
+V,, (r)R(r) =ER(r). (6)

For the expression of the radial wave equation
in terms of unitless radial variable, we let z=r/r,, and
the unitless energy parameter we also let &=2mr” E/ 1.

So the new radial wave function is as follows.
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W(Z)ZR(V). (@)

Then the equation of motion in eq. (6) and (7)

can be rewritten as

_[2 d, d& jw(z)+e(e+1)w(z)

zdz dZ?
1 1
+a(?—?jw(z)=gw(z). (8)

The atomic unit is usually used in the Sl unit for
the solutions. However, for convenience we choose the

unit of physical quantities as followed in Table 1.
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Figure 1 The bounded energy parameter versus the intensity of Lennard-Jones potential by varying the intensity of

range of 0 <5 <300. This relation shows the ground state of the angular momentum quantum number
¢=0,1,2,3,4,5 and the first excited state £ =0.1.2.
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v

Figure 2 Generalized Lennard-Jones potential U(r)’ ris the radius and "¢ 'is the equilibrium distance (the clas-

sical turning point of the minima of potential).
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Table 1 Relationship of quantity between Sl and atomic units

Quantity Sl unit Atomic Unit Comparison
Energy J, eV Hatree 1 Hatree = 27.2 eV
Mass kg, eV/c® m, Tm = 9.1x10™ kg
Length m, A Bohr’s radius 1 Bohr's radius = 0.529 A
For simplicity, we set /i =1, m, Sl 1 =1.
4me,

1. Procedures of numerical methods

According to the partial differential equations in
egs. (6)-(8), it is difficult to solve for the exact solution.
To solve the approximate solution for sake of brevity, we
introduce the numerical method for this problem. In this
article, we prefer to present the method that is used to
solve for the eigenvalues, A and eigenvectors, ¥ (or
eigenenergies and eigenstates respectively), by using the
finite difference method on the real space.

The finite difference method'®"

is the develop-
ment to estimate the solution of a differential equation.
Some coefficients come from the Taylor series. The small
step size is defined as h and the coefficient is brought
to multiply with parameters. We show how this method

works as following:
f(x+h):f(x)+hf'(x)

+h—2f”(x)+h—3f’”(x)+ (h“) 9)
2] 31 o)

and

f(x=h)=f(x)=hf"(x)

+h_2fu(x)_h_3fm(x)+0 (h4)
2! 3! ’ (10)

where

(=4 (). ch

F =2 1),

= d’
0= 1), "

n
© (h ) is called the n" truncations error. The

combination between egs. (9) and (10), leads to

f(x+h)+f(x=h),
=2/ (x)+hf"(x)+o (h*)

(12)

As for the centered two points stencil for the first
and the centered three points stencil for the second order
derivative approximation, are shown as in egs. (13) and

(14) respectively,

f,(x):f(X+h)2—hf(x—h) o (), 03

and

v L) =2 () +f (x=h)
f (x)_ e (h ) (14)

Changing the indices of implementation intoi,
we have the first and second derivatives in terms of i

respectively as
4 ];+ _ﬁ—
fi=egvo (1), (15)

fi”: Joa _2]/2]:1 +fia +0 (hz)'

(16)

Figure 3 Define the position in finite difference method

2. The Eigenvalue equation and estimated

values by using finite difference method
According to the quantum matrix mechanism as
Hy =Ay, (17)
where ﬁ is the square Hamiltonian matrix, in
which every diagonal elements does not vanish. The
specific vector 7 is called the eigenvector which can span
in term of matrix ﬁ and multiply by the constant As s
the so-called eigenvalue. Then, we introduce the deter-

minant equation, to find the eigenvalue as
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det|H-1,2]=0, (18)

where L, is an identity matrix 77*"- Consider

the energy level from the wave function only the radial
wave function in eq. (6) by using the finite difference
method, the equation of motion in the radial part yields
as eq. (19). By using the atomic unit, we can create the
update equation

which is the matrix formalism in egs. (20) and

(21)

_ gm+1—vv,»fl+vv,-+l—2w+w4_
z, 2Az (Az)z
0(¢+1) 1 (Y]
w+o||l—| —-|—| |W
(Z,-)2 l Z Z l
=&, (19)
1 1 2 o(e+1)
AR} > +— | W, Rl 5
(Az) =] [(a2) (2)
vo| - Ll |- -1
(z)" @))] L (%) =
—en (20)
2
multiplying by (AZ) on both sides of eq. (20)
to obtain
Wi l:A'i,i—l :I +W, I:Bn :' W I:Ci.m :'
=(Az) ew,
=Aw.

(21)

In this paper, we consider only the radial part
wave function, R, because only this part yields the
eigenvalue in each states. The coefficients in eq. (21) are
used to create the Hamiltonian matrix ﬁ, which is the
NxN square matrix. As in the calculation for the
eigenvalues and eigenvectors, we have to use this

Hamiltonian matrix where the parameter of eigenvalue is

2
A. The eigenenergy is in the form ofg:i/(Az) )
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inally, we calculate the wave function X from this
method. The solution of A or € is the diagonal matrix but
X is in the column matrix. The treatment of the
Hamiltonian matrix is to concern in the indices I from 1
to N. We obtain the eigenvalue equation as follow in the

egs.(22) and (23):

1 0\ w W
1 w, W,
€ S |=H
1 WN-] WN 1
0 L)\ wy Wy (22)
B, C, O 0 0 0
A2,1 B 2,2 C2~3 0 O 0
H=| 0 A3,2 33,3 C3,4 0 0
0 o - i 5 0
0 0 0 AN‘N—I BN,N Cywa
(23)

The computational solution using the finite
difference method, in the implementation, we define the
radius between two particles (L) equals 5 Bohr radius
by spanning the small pieces of area of 2000 slots
(N is a number of Max Step). Each slot is called a step
size (Az=Step Size =L/N). We let the intensity of
potential O = 260 by using the relationship between the
unitless of energy and intensity potential parameters® in
figure 1. The ground state and the excited states are
defined by the principal quantum number "> and the

angular quantum number, 4

The results of numerical method

According to the ground state energy of 7! =1 and (=1
where these quantum number refer to the S-orbital and
the excited energies of /1 >1 refer to the higher orbitals.

2 2
The radial probability distribution £» =2 W, |

the unitless ratio of radius * =r/re is shown in figures

versus

4(a)-4(e) with the increasing of the energy parameters of
bound state € for the first-five states i.e. 7= 1to 5 equal
to -28.5887, -1.2399, 1.4189, 4.6293 and 9.3165 respec-

tively.
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Figure 4 Plot of the radial probability distribution as a function of z where (a) The ground state 72 =L/¢=1, and
€=-28.5887. (b) The 1% excited state, 7=2¢=1, and €==1.2399. (c) The 2" excited state,
n=30=1, gng €=14189. (4) The 3rd excited state, 7=4 (=1, and €=46293. (&) The 4"

excited state, 7=5,¢=1, and &€=9.3165

Discussion and conclusion

The bound state energies of two-particle system
in the Lennard-Jones potential are studied in several
states and correspond to the spanned wave function in
each quantum state. We have considered the numerical
solution by using a finite difference method and showed
the graphical solution by the radial probability distribution
of the first-five states, 7 = 1 to 5. The negative energy
levels refer to the bound state because of the influence
of the potential energy is greater than the kinetic energy.
In the other way, the positive energy levels refer to the
excited (unbound) state of particles, which means when
we increase 7 (principle quantum number) then the

energy level of two-particle system is also increased. So

they are in excited state or unbounded state. The
numerical results show that it is easy to excite the
two-particle system. The number of peaks in Figure 4
refers to the principal quantum number 72 '

The accuracy of the calculation depends on
numbers of step size (Az) or the width of potential well
(L). In this implementation, we choose the width of the
potential well of 5 Bohr radius then the numerical unitless
max step and step size are 2000 and 0.0025, respec-
tively. The results are represented for the energy levels
of the first-five states which are illustrated in F igure 4.

As the results, the finite difference method is
used to implement calculation of the energy levels and

the radial probability distribution of the one dimensional
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Schrédinger equation with the Lennard-Jones potential.
This proposed method is highly useful, efficient and easy
to implement.

The finite difference scheme is wildly used in
several research problems even referred to the differential
equation with the truncation error of 0 (h2 ) for a centered

three points stencil for a second derivative.
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