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The ratio of the »-th exponential subsequence of the Fibonacci Sequence
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Abstract

It is well known that the ratios of the consecutive terms of the Fibonacci numbers {F,.}>_, and those of the Lucas

numbers {L,.}> _, converge to the golden ratio. In this work, we study the n-exponential subsequence {F,,n} , where

n is a positive integer. We show that the limit of the quotient between

Fimspn and Fpn

mn Fan-aym

converges if and only if

n < 2 by proving a more general statement for the sequences satisfying a recurrence relation of order 2 that covers

the Fibonacci sequence. We also give the limit of the convergence if it exists.
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Introduction

The Fibonacci sequence {Fm}°0 is defined by the

m=

recurrence relation

szFm—l—'_En—Z,formzz’ (1)

where F=( and F=1. In 2015, Craciun'’
defined a geometrical generalization of the golden ratio
by considering a ratio between two sub-segments and its

relation to a homogeneous function M defined by

M :(0,00)x(0,00) —(0,0)

satisfying
i x<M(x,y)<y,foral 0<x<y

and

i. M(Ax,Ay)=AM((x,y), forall 4,x,y < (0,0).
The Fibonacci numbers have been generalized in many
ways, one of which is the k — Fibonacci numbers’ defined
by, for a non-zero integer £,
E{,m = kEc + E{,m—Z’ form = 2,

where ﬂo = (0 and Fk1: 1. It is well known

,m—1

that the ratio of consecutive Fibonacci numbers converges

_ 1+J§

to the golden ratio @ . If we consider the n

-exponential subsequence {Fm,, }:=1 of the Fibonacci
sequence, it is obvious that the ratio of consecutive terms
goes to infinity.

We will study a more generalized form of the

Fibonacci and k — Fibonacci numbers. For a non-zero
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real number k, we let {a, |” , be a sequence generated
.

by a recurrence relation

a, =ka,, +a,,, for m>2 (2)

where g, =s and @ =1. We assume that
a, #0, forall m, n=1.
The followings are examples of the sequences
satisfying (2):
«if k=1, 5=0,t=1, then g is the Fibonacci
number F
- if k=1, s=2, t=1, then a, is the Lucas number
Lna
«if k=2, 5=0, t =1, then a, is the Pell number
b,
«if k=2,5=2,t=2, then a, is the Pell-Lucas

number Q.

In this paper, we are interested in the growth

a(m+1)"

rate of such ratios which is the quotient of and

a
a., . . Lo
»"_ |t has been shown that if & is a positive integer,

k,m+p

= )

lim
m—»0
k,m

where p is a positive integer and

_ k+ Vi +4
2

limit of the quotient of

A . By (3), it can be verified that the

F;c,(m+l)" F;(,m"
——. and ———— converges

k,m" ky(m-1)"
if and only if # < 2, and that if # = 2, then the

limit converges to go,f. Considering a more generalized

sequence {am }:ZO we give a result related to the quotient

(m+1)" a ., .
) and —— in

m" a(m—l)"

a

Theorem 2.1.

In 2016, R. Euler and J. Sadek® showed that

4, =——(ar" — prt"), )

h=n

where @ =s—tr,, S =t—s7, and

k+\k*+4 k—~k*+4
2 ’ 2

such that

ht €
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|7”1| >|7’2| . We note that 0 < |r2| < 1.

Main Theorem

Considering {a,}"_, satisfying (2),

we let
a,
am(") —_m
a .,
(m—l)
Theorem 2.1.
) 0, ifn=l,
lim 'E’;)l =r’, if n=2,
m—0 am .
oo, otherwise.

Proof. By using the Binet formula of @, in (4),
()
a

m+1

a”

m

—

_ Gy Fnry
a 1 a 1

m m
_ a’,i(nm)” _ﬁrz(mﬂ)” . a’,i(ml)” _ﬂr2(m-l)"
" " " "
an” = pr, an™ = pr,
2, (m+1)"+(m-1)" (m-1)" _ (m+1)"
_a of,™ " K
n n 2
(anm-ﬁwf)
_ (m-1)" _(m+1)" 2 (m+1)"+(m-1)"
opin, h +p°n
7 7 2
(aﬂi—ﬁﬂ)

a2ri(m+1)” +(m-1)" + ﬂZ rz(m—l)” +(m-1)"

= n n 2
m m
(arl - pr )

+

ey =1y’ r2(m+l)”—(m—l)” )

ﬂﬁ“@ﬁwwl

n 1 2
(aﬂ’—ﬂﬁ)

2 (m+1)"+(m-1)" 2 (m=1)"+(m-1)"
_ar +fn
n n 2
( a}/im _ ﬂrzm )
(m+1)"—(m-1)" (m+1)"~(m-1)"
R
n 7 2
(an“-—ﬁ%?)

n 1y —1)" n_ o 1\
2 (m+1)"+(m-1) —afﬂ(—l)(m ) r](m+1) (m-—1)

ah
B m" m" 2
(a’i - :B n )

—ap(-1)"""

ﬂZrz(m—l)"Jr(m—l)” _ aﬂ (_1)(m—1)” rz(m+l)”f(mfl)”
+

o 1 2
(anm =B )
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2 (m+l) +Hm-1)"-2m" _ aﬂ( l)<m 1" (m+1)”—(m—1)”—2mz

Az

l(m 1y (m+l) —(m-1)"-2m?

\\N

ﬂz (m+1)" +(m-1)"-2m" _aﬂ
2

i) -

n -1y N 1V 2
a2ri(m+1) +Hm-1)"—2m" —aﬂ(—l)(m ) rl(m+1) (m-1)"-2m

|

®)

We have

lim

o[z

0, if n=1,
=11, if n=2,
o, if n=3.

Since () < |r2| <1 and |r2|<|r1| it follows that

(Mm=1)" (m+1)"~(m—1)"—2m>
. — aﬂ -1 7,
hm ( ) 2

g

2 (m+1)" +(m-1)"—2m"
B
=0.

Therefore,
. 0, if n=1,
a ) .
LR
a .
m o,  otherwise.

By (5), we can also conclude that

a(m+1 2m 2
o co0@™ ).

}71

Theorem 2.1 implies that, for any positive integer & , the
growth rate of the ratios of consecutive terms of the 7 —

0
exponential subsequence {a } converges if and
m

m=

only if n < 2.

Theorem 2.1 can be generalized to the sequences
b 0
{ ’”}"’:0 defined by

b kb +kb for m>2 (6)

m—2"
where kp k2 are non-negative integers and
by =s,b =1t.

equation of (6) are distinct, then the Binet formula of bm s

m:r%{@ﬂmm+@kﬂq) @)
1~ 0

If the roots of the characteristic
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where

| = ki +m
2

and

2
If 1—k <k, <0, then 0</, <1 and [, </,.

So, we are able to extend the same method appearing
in Theorem 2.1 to Theorem 2.2.

Theorem 2.2. If b"”
1-k <k, <0, in1(6), then

is not zero for all m,n>1 and

po | % n=l
m+l1 l lf‘ n= 2’
p
m 0, otherwise.

As a result, the quotient of the ratios of the n — exponen-
tial subsequence of the Fibonacci sequences converges
to the square of the golden ratio.

Let £, L,, P,
Number, Pell number and Pell-Lucas number, respec-
tively. Let Q be the golden ratio and 5=1+J§,

, O, be the Fibonacci number, Lucas

Corollary 2.3. The following statements are true:

F@

o lim—2_=¢’
" E»(zzl
)

o limle =¢

(2)
e lim Q”; 5
"
Corollary 2.4
2
(k +VE + 4)
o I if k>0,
lim—2 =
e 72 > 2
e (k- k +4)
g if k<O.

Example 2.5 gives an example of the sequences satisfying
Theorem 2.2 but not the sequences in Corollary 2.3 and
24.

Example 2.5. Let b,
hy=0,b = 1..

=3b, ,+ 2b, ,,, where

m—1

Table 1 shows the value of p ,, for
m
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m= 1,...,10. By Theorem 2.2,

Biweap By (3 +*/ﬁ)2

lim =
Mm—>0 bm2 4
Table 1: b,
m
b, | valueof b,
m m
b 1
1
39
b4
b 22363
9
162557031
bl()
b 14988571946011
25
b36 17530468900008685335
b49 260079179143778066525568571
b64 48943657027144499564640559765030311
b8 . 116833133373681561419044674956313653328090043
b 3537646303459605111696665428274832196761996930395731479
100
Discussion

Theorem 2.2 implies that all sequences satisfy-
ing the recurrence relation (6) with a condition that
1-k <k,<0,and b , is non-null real number, for
m,n 21. The growth of the ratios of consecutive terms
of the subsequence {bm} is
0(112’”%2 ) It converges if and only if 7 < 2. Moreover,
if n = 2, then

i By _ 28 + 24K + 4k, +4k,

" bﬂlz 4
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