ปริภูมิเชิงทอพอโลยีแบบเรียบสามัญวางนัยทั่วไป

Generalized Ordinary Smooth Topological Spaces

ศศิกานต์ พิมพา¹, ดรุณี บุญชารี², จีระนันท์ คำภักดี², กิตติศักดิ์ แสงสุระ²゚

Sasikarn Pimpa¹, Daruni Boonchari², Jeeranunt Khampakdee², Kittisak Saengsura^{2*}

Received: 4 August 2017; Accepted: 28 November 2017

บทคัดย่อ

ในบทความนี้ เราได้แนะนำการวางนัยทั่วไปสำหรับปริภูมิเชิงทอพอโลยีแบบเรียบสามัญ ซึ่งเราเรียกว่าปริภูมิเชิงทอพอโลยีแบบ เรียบสามัญวางนัยทั่วไป และศึกษาสมบัติบางประการบนปริภูมิเชิงทอพอโลยีแบบเรียบสามัญวางนัยทั่วไป เช่น ตัวดำเนินการ ปิดคลุม ตัวดำเนินการภายในและความต่อเนื่องของฟังก์ชันบนปริภูมิดังกล่าว

คำสำคัญ: ปริภูมิเชิงทอพอโลยีวางนัยทั่วไป ปริภูมิเชิงทอพอโลยีแบบเรียบสามัญ ปริภูมิเชิงทอพอโลยีแบบเรียบสามัญวางนัย ทั่วไป

Abstract

In this paper, we introduce the concept of generalization for ordinary smooth topological space which we call a generalized ordinary smooth topological space and we also study some properties of such space, for instance, closure operator, interior operator and continuity.

Keywords: Generalized topological spaces, Ordinary smooth topological spaces, Generalized ordinary smooth topological spaces.

Introduction and Preliminaries

The concepts of a generalized topology on X was first introduced by Csa'sza'r in as a subset $\overline{\mu}$ of P(X) with the properties¹:

1.
$$\emptyset \in \mu$$
.

2.
$$\bigcup_{i \in I} \mu_i \in \mu$$
 for all $\mu_i \in \mu$ and $i \in I \neq \emptyset$.

The pair (X, μ) is called a generalized topological space and $\overline{\mu}$ is called a generalized topology (briefly GT).

In the paper introduced the concepts of ordinary smooth topology on X as a mapping $\tau\colon 2^X\to I$ with the properties²:

$$\begin{split} \tau(X) = & \ \tau(\emptyset) = 1, \\ \tau(A \cap B) \geq & \ \tau(A) \wedge \ \tau(B) \text{ for all } A, B \in 2^X, \\ \tau(\bigcup_{\alpha \in \Gamma} A_\alpha) \geq & \ \bigwedge_{\alpha \in \Gamma} \tau(A_\alpha) \text{ for all } \{A_\alpha\} \subseteq 2^X, \\ \text{where } 2^X \text{ is the powerset of } X \text{ and } I \text{ is a closed interval } [0,1]. \end{split}$$

The pair (X,τ) is called an ordinary smooth topological space (briefly, *osts*).

In the paper defined an ordinary smooth closure and an ordinary smooth interior in (X, τ) and gave the characterizations of ordinary smooth closure and ordinary smooth interior².

¹ นิสิตปริญญาโท, ²ผู้ช่วยศาสตราจารย์, ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม อาเภอกันทรวิชัย จังหวัดมหาสารคาม 44150 ประเทศไทย

¹ Master' degree student, ²Assistant Professor, Department of Mathematics, Faculty of Science, Mahasarakham University, Kuntarawichai District, Maha Sarakham 44150, Thailand.

^{*} Corresponding author. Kittisak Saengsura, Centre of Excellence in Mathematics, CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand. Kittisak.s@msu.ac.th

In this paper, we define the space which generalizes the generalized topology on X, we call a generalized ordinary smooth topological space and we also study some properties on such space and continuous maps between the ordinary smooth topological spaces.

Results

In this section, we define a generalized ordinary smooth topological space and give an analogue of generalized ordinary smooth topological space as the result.

Definition 1.1. Let X be a nonempty set. Then a mapping $\mu\colon 2^X\to I$ is called a generalized ordinary smooth topology (briefly gost) on X if μ satisfies the following axioms:

$$\begin{split} &\mu(\emptyset) = 1, \\ &\mu(\bigcup_{\alpha \in \Gamma} A_\alpha) \geq \bigwedge_{\alpha \in \Gamma} \mu(A_\alpha) \ \ \text{for all} \ \ \{A_\alpha\} \subseteq 2^X, \\ &\text{where } 2^X \text{ is the powerset of X and I is a closed} \end{split}$$

interval [0,1].

The pair (X,μ) is called a generalized ordinary smooth topological space (briefly gosts). We will denote the set of all gosts on \overline{X} by GOST(X).

Example 1.2. Let $X = \{a, b, c\}$. We define the mapping $\mu \colon 2^X \to I$ as follows: Let $A \in 2^X$,

$$\mu(A) = \begin{cases} 1, & \text{if } A = \emptyset; \\ 0.8, & \text{if } A = X \text{ or } A = \{b, c\}; \\ 0.6, & \text{if } A = \{a\}; \\ 0.5, & \text{if } A = \{b\} \text{ or } \{a, b\}; \\ 0.4, & \text{if } A = \{c\} \text{ or } \{a, c\}. \end{cases}$$

Then $\mu \in GOST(X)$.

The operators on X which is induced by the generalized ordinary topologies μ are defined as follows:

Definition 1.3. Let (X, μ) be a *gosts* and let $A \in 2^X$. Then the generalized ordinary smooth closure and generalized ordinary smooth interior of A in X are defined by

$$\overline{A} = \bigcap \{F \in 2^X : A \subseteq F \text{ and } \mu(F^c) > 0\}$$
, and $A^\circ = \bigcup \{U \in 2^X : U \subseteq A \text{ and } \mu(U) > 0\}$, respectively.

Example 1.4. From Example 1.2 and let $A = \{a, c\}$. Then

$$A^{\circ} = \bigcup \{U \in 2^{X} : U \subseteq \{a, c\} \text{ and } \mu(U) > 0\}$$

= $\bigcup \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$
= $\{a, c\}$

and
$$\overline{A} = \bigcap \{F \in 2^X : \{a, c\} \subseteq F \text{ and } \mu(F^c) > 0\}$$

$$= \bigcap \{X, \{a, c\}\}$$

$$= \{a, c\}.$$

The following propositions are the properties of gosts

Proposition 1.5. Let (X, τ) be a gosts and let $A, B \in 2^X$. Then:

If
$$A \subseteq B$$
, then $A^{\circ} \subseteq B^{\circ}$ and $\overline{A} \subseteq \overline{B}$.
 $(A^{\circ})^{c} = \overline{A^{c}}$.
 $A^{\circ} = (\overline{A^{c}})^{c}$.
 $\overline{A} = ((A^{\circ})^{c})^{c}$.
 $(\overline{A})^{c} = (A^{c})^{\circ}$

Proof. (1) Obvious.

(2) For any
$$A \in 2^X$$
, we have that $(A^\circ)^c = (\bigcup \{U \in 2^X : U \subseteq A \text{ and } \mu(U) > 0\})^c = \bigcap \{U^c \in 2^X : A^c \subseteq U^c \text{ and } \mu(U^c) > 0\} = \overline{A^c}$

The proof of (3), (4) and (5) are easily obtained from (2).

Proposition 1.6. Let (X, τ) be a *gosts* and let $A, B \in 2^X$. Then:

$$A^{\circ} \subseteq A$$

 $(A^{\circ})^{\circ} = A^{\circ}$
 $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$

Proof. (1) Obvious.

(2) For each $A \in 2^X$, using (1), we have that $(A^\circ)^\circ \subseteq A^\circ$. Since $(A^\circ)^\circ = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) = 0 \text{ and }$

$$(A^\circ)^\circ = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A^\circ\} = \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq \bigcup \{W \in 2^X : \mu(W) > 0 \text{ and } W \subseteq A\}\} \supseteq \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A\} = A^\circ,$$
then
$$(A^\circ)^\circ = A^\circ.$$

(c) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, $(A \cap B)^{\circ} \subseteq A^{\circ}$ and $(A \cap B)^{\circ} \subseteq B^{\circ}$. Thus $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$.

Proposition 1.7. Let (X, τ) be a gosts and let $A, B \in 2^X$. Then: $A \subseteq \overline{A}$

$$\frac{A \subseteq A}{\overline{(A)} = \overline{A}}$$

$$\overline{A \cup B} \subseteq \overline{A \cup B}$$

Proof. The proofs are similar to that of Proposition 1.6.

360 Sasikarn Pimpa et al. J Sci Technol MSU

Definition 1.8. Let (X,μ) be a *gosts*, $r\in I$ and $A\in 2^X$. Then we define $\overline{A_r}$ and A_r° by $\overline{A_r}=\cap \{F\in 2^X: A\subseteq F \text{ and } \mu(F^c)\geq r\}$ and $A_r^\circ=\bigcup \{U\in 2^X: U\subseteq A \text{ and } \mu(U)\geq r\},$ respectively.

We called $\overline{A_r}$ a generalized ordinary smooth rravel closure and A_r° a generalized ordinary smooth rravel interior.

Then the following results are obtained:

Proposition 1.9. Let (X, τ) be a *gosts* and let $A \in 2^X$. Then:

 $\begin{aligned} &\text{If } \mu(A)>0, \text{ then } A=A^{\circ}.\\ &\text{If } \mu(A^{\circ})>0, \text{ then } A=\overline{A}. \end{aligned}$

If there is $r \in I_0$ such that $A = \overline{A_r}$, then $A = \overline{A}$. If there is $r \in I_0$ such that $A = A_r^\circ$, then $A = A^\circ$.

Proof. (1) Let $\mu(A) > 0$. Then

 $A \in \{U \in 2^X : U \subseteq A \text{ and } \mu(U) > 0\}, \text{ so } A \subseteq \bigcup \{U \in 2^X : U \subseteq A \text{ and } \mu(U) > 0\},$

thus $A \subseteq A^{\circ}$.

Therefore $A = A^{\circ}$.

(2) Let
$$\mu(A^c) > 0$$
. Then $A^c = (A^c)^\circ$, so $(A^c)^c = ((A^c)^o)^c$. Thus $A = \overline{A}$.

(3) Assume that $r\in I_0$ such that $A=\overline{A_r}$. Since $\overline{A}=\bigcap\{F\in 2^X:A\subseteq F\text{ and }\mu(F^c)>0\}\subseteq\bigcap\{F\in 2^X:A\subseteq F\text{ and }\mu(F^c)\geq r\}=\overline{A_r}=A$, $\overline{A}\subseteq A$. So $A=\overline{A}$.

 $\begin{array}{c} (4) \text{ Assume that } r \in I_0 \text{ such that } A = A_r^\circ. \text{ Since } \\ \mu(A_r^\circ) = \mu(\bigcup \{V \in 2^X : \mu(U) \geq r \text{ and } V \subseteq A\}) \geq \wedge \mu(\bigcup \{V \in 2^X : \mu(U) \geq r \text{ and } V \subseteq A\}) \geq r > 0 \\ \text{So} \\ A_r^\circ \in \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A_r^\circ\} \subseteq \bigcup \{U \in 2^X : \mu(U) > 0 \text{ and } U \subseteq A\} = A^\circ \end{array}.$

Thus $A = A_r^{\circ} \subseteq A^{\circ} \subseteq A$. Therefore $A = A^{\circ}$.

2. Generalized ordinary smooth continuity

In this section, we defined a continuous mapping on generalized ordinary smooth topological spaces as follows:

Definition 2.1 Let (X, μ_1) and (Y, μ_2) be *gosts's*. Then a mapping $f: X \to Y$ is said to be:

A generalized ordinary smooth continuous (briefly gos-continuous) if $\mu_2(A) \le \mu_1(f^{-1}(A))$ for all $A \in 2^Y$.

A generalized ordinary weakly smooth continuous (briefly gows - continuous) if for each $A \in 2^{Y}$, $\mu_{2}(A) > 0 \Rightarrow \mu_{1}(f^{-1}(A)) > 0$.

Example 2.2. Let $X = \{a, b, c\}$. We define two mapping as follows: For each $C, D \in 2^X$.

$$\mu_1(C) = \begin{cases} 1, & \text{if } C = \emptyset; \\ \frac{1}{2}, & \text{if } C = X \text{ or } C = \{b, c\} \text{ or } C = \{a\}; \\ 0, & \text{otherwise}, \end{cases}$$

$$\mu_2(D) = \begin{cases} 1, & \text{if } D = \emptyset; \\ \frac{1}{3}, & \text{if } D = X \text{ or } D = \{b, c\} \text{ or } D = \{a\}; \end{cases}$$

and

Cleary, the identity mapping $id:(X,\mu_2) \to (X,\mu_1)$ is gows-continuous, but id is not gos-continuous.

The following results are obtained that:

Corollary 2.3. Let (X, μ_1) and (Y, μ_2) be gosts's and let a mapping $f\colon X\to Y$. Then: f is gos-continuous iff $\mu_2(A^c)\le \mu_1\bigl(f^{-1}(A^c)\bigr)$ for all $A\in 2^Y$. f is gows-continuous iff $\mu_2(A^c)>0\Rightarrow \mu_1\bigl(f^{-1}(A^c)\bigr)>0$ for all $A\in 2^Y$.

Proposition 2.4. Let (X, μ_1) and (Y, μ_2) be gosts's and let a mapping $f: X \to Y$ be gows-continuous. Then: $f(\overline{A}) \subseteq \overline{f(A)} \text{ for all } A \in 2^X.$ $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}) \text{ for all } B \in 2^Y.$ $f^{-1}(B^\circ) \subseteq (f^{-1}(B))^\circ \text{ for all } B \in 2^Y.$ **Proof.** (1) Let $A \in 2^X$. Since

$$\begin{split} f^{-1}\Big(\overline{f(A)}\Big) &= f^{-1}(\bigcap \{F \in 2^Y : \mu_2(F^c) > \\ 0 \text{ and } f(A) \subseteq F \}) \\ &= \bigcap \{f^{-1}(F) \in 2^X : F \in 2^Y, \mu_2(F^c) > \\ 0 \text{ and } A \subseteq f^{-1}(F) \} \\ &\supseteq \bigcap \{f^{-1}(F) \in 2^X : F \in 2^Y, \mu_1\big(f^{-1}(F^c)\big) > \\ 0 \text{ and } A \subseteq f^{-1}(F) \} \end{split}$$

 $= \overline{A},$ $\operatorname{then} \overline{A} \subseteq f^{-1}\left(\overline{f(A)}\right).$ $\operatorname{Thus} f(\overline{A}) \subseteq f\left(f^{-1}\left(\overline{f(A)}\right)\right) \subseteq \overline{f(A)}.$ $(2) \text{ Let } B \in 2^{Y}, \text{ we have } f^{-1}(B) \in 2^{X}.$ $\operatorname{Then} f\left(\overline{f^{-1}(B)}\right) \subseteq \overline{f(f^{-1}(B))} \subseteq \overline{B},$ $\operatorname{so}\left(\overline{f^{-1}(B)}\right) \subseteq f^{-1}\left(\overline{f(f^{-1}(B))}\right) \subseteq f^{-1}(\overline{B}).$ $(3) \text{ Let } B \in 2^{Y}.$

Then $f^{-1}(\overline{B^c}) = f^{-1}((B^\circ)^c) = (f^{-1}(B^\circ))^c = \left(f^{-1}(\overline{B^c})^c\right)^c = f^{-1}(\overline{B^c}) \supseteq \overline{f^{-1}(B^c)} = \overline{(f^{-1}(B))^c} = ((f^{-1}(B))^\circ)^c$

So
$$((f^{-1}(B))^{\circ})^{\circ} \subseteq f^{-1}((B^{\circ})^{\circ})$$
.
Hence $f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ}$.

The following Corollary is immediate from Definition 2.1 and Proposition 2.4.

Corollary 2.5. Let (X, μ_1) and (Y, μ_2) be gosts's and let a mapping $f: X \to Y$ be

$$gos-continuous$$
. Then: $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \in 2^X$. $f^{-1}(B) \subseteq f^{-1}(\overline{B})$ for all $B \in 2^Y$. $f^{-1}(B^\circ) \subseteq (f^{-1}(B))^\circ$ for all $B \in 2^Y$.

The generalized ordinary smooth open map and generalized ordinary smooth closed map are defined as follows:

Definition 2.6. Let (X, μ_1) and (Y, μ_2) be gosts's. Then a mapping $f\colon X\to Y$ is said to be: a generalized ordinary smooth open (briefly gos-open) if $\mu_1(A)\leq \mu_2(f(A))$ for all $A\in 2^X$. a generalized ordinary smooth closed (briefly gos-closed) if $\mu_1(A^c)\leq \mu_2(f(A^c))$ for all $A\in 2^X$.

Example 2.7. Let $X = \{a, b, c\}$. We define two mapping as follows: For each $C, D \in 2^X$,

$$\mu_{1}(C) = \begin{cases} 1, & \text{if } C = \emptyset; \\ \frac{1}{4}, & \text{if } C = X; \\ \frac{1}{6}, & \text{if } C = \{b, c\}; \\ 0, & \text{otherwise,} \end{cases}$$

and

$$\mu_2(D) = \begin{cases} 1, & \text{if } D = \emptyset; \\ \frac{1}{2}, & \text{if } D = X; \\ \frac{1}{5}, & \text{if } D = \{b,c\}; \\ 0, & \text{otherwise.} \end{cases}$$

Then $\mu_1, \mu_2 \in GOST(X)$. Consider the identity mapping $id: (X, \mu_1) \to (X, \mu_2)$. Then we can see that id is gos - open and gos - closed.

Then we obtain the following result:

Proposition 2.8. Let (X, μ_1) and (Y, μ_2) be gosts's. If $f: X \to Y$ is gos - open, then $f(A^\circ) \subseteq (f(A))^\circ$ for each $A \in 2^X$.

Proof. Let
$$A \in 2^X$$
. Since $f(A^\circ) = f(\bigcup \{U \in 2^X : \mu_1(U) > 0 \text{ and } U \subseteq A\})$

$$= \bigcup \{ f(U) \in 2^Y : U \in 2^X, \mu_1(U) > 0 \text{ and } f(U) \subseteq f(A) \}$$

$$\subseteq \bigcup \{ f(U) \in 2^Y : U \in 2^X, \mu_2(f(U)) > 0 \text{ and } f(U) \subseteq f(A) \}$$

$$\subseteq \bigcup \{ V \in 2^Y : \mu_2(V) > 0 \text{ and } V \subseteq f(A) \}$$

$$= (f(A))^\circ$$

$$f(A^\circ) \subseteq (f(A))^\circ$$

Definition 2.9. Let (X, μ_1) and (Y, μ_2) be gosts's. Then a mapping $f: X \to Y$ is called a generalized ordinary smooth homeomorphism if f is a bijective and f, f^{-1} are generalized ordinary smooth continuous.

Now, we have the relation of generalized ordinary smooth homeomorphisms, gos - open and gos - closed as follow:

Theorem 2.10. Let (X, μ_1) and (Y, μ_2) be gosts's and let $f: X \to Y$ be a bijective and f be gos-continuous. Then the following statements are equivalent:

f is generalized ordinary smooth homeomorphism. f is gos - open. f is gos - closed

Proof. (1) \Longrightarrow (2) Assume that f is a generalized ordinary s m o o t h h o m e o m o r p h i <math>s m. Then $\mu_1(A) \leq \mu_2 \left((f^{-1})^{-1}(A) \right) = \mu_2 \left(f(A) \right)$. Thus f is gos-open.

(2) \Longrightarrow (3) Assume that f is gos-open. Let $A\in 2^X$, we have $\mu_1(A^c)\leq \mu_2(f(A^c))$. Since f is bijective, $\mu_1(A^c)\leq \mu_2(f(A^c))$. Thus f is gos-closed. (3) \Longrightarrow (1) Assume that f is gos-closed. Let $A\in 2^X$. Then $\mu_1(A)\leq \mu_2(f(A))=\mu_2((f^{-1})^{-1}(A))$. Thus f^{-1} is gos-continuous. Hence f is a generalized ordinary smooth homeomorphism.

References

- Csa'sza'r, A'. Generalized topology, generalized continuity. Acta Math.Hungar, 2002; 96: 351–357.
- Jeong G.L., Kul H., Pyung K.L. Closure interior redefined and some types of compactness in ordinary smooth topological spaces. Kor. *Journal of Intelligent Systems*, 2013; 1(23): 80-86.
- Jeong G.L., Kul H., Pyung K.L. Closure interior and compactness in ordinary smooth topological spaces. Int. *Journal of Fuzzy Logic and Intelligent Systems*, 2014; 3(14): 231-239.

362 Sasikarn Pimpa et al. J Sci Technol MSU

4. Pyung K.L., Byeong G.R., Kul H. Ordinary smooth topological spaces. Int. *Journal of Fuzzy Logic and Intelligent Systems*, 2012; 1(12): 66-76.