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บทคัดยอ
บทความนี้เสนอเกณฑการคัดเลือกตัวแบบเพื่อแกไขปญหาอัตราสวน signal-to-noise ท่ีนอยเกินไป และความนาจะเปนที่จะ 

over/underfitting สําหรับตัวแบบถดถอย โดยการปรับ penalty term ของเกณฑการคัดเลือกตัวแบบที่เปนที่รูจัก (AIC, BIC, 

KIC) เรียกชื่อเกณฑใหมน้ีวา adjusted penalty information criterion (APIC) เกณฑที่จัดวาเปนเกณฑที่ดี เมื่อมีอัตราสวน 

signal-to-noise ที่มาก มีความนาจะเปนที่จะ over/underfitting ตํ่า และมีความนาจะเปนที่จะคัดเลือกตัวแบบไดถูกตองสูง การ

พสิจูนทางทฤษฎ ีพบวา ถาคาของ α เขาใกลอนนัต ความนาจะเปนทีจ่ะ overfitting จะเขาใกล 0 และอตัราสวน signal-to-noise 

จะมีแนวโนมมาก แตความนาจะเปนที่จะ underfitting จะเขาใกล 1 ผลการจําลองขอมูล พบวา เมื่อตัวแบบสามารถระบุไดยาก 

การแจกแจงของตัวแปรอิสระ คือ การแจกแจงปกติหรือการแจกแจงเอกรูป คาที่เหมาะสมของ σ2 ควรมีคานอย แตสําหรับการ

แจกแจงของตัวแปรอิสระ คือ การแจกแจงปกติ ขนาดตัวอยางเพิ่มขึ้น และความแปรปรวนของความคลาดเคลื่อนมีคานอยถึง

ปานกลาง α ควรมีคาปานกลาง ถาตัวแบบสามารถระบุไดงาย การแจกแจงของตัวแปรอิสระ คือ การแจกแจงปกติ และความ

แปรปรวนของความคลาดเคลื่อนมีคานอยถึงปานกลาง α ควรมีคามาก เมื่อความแปรปรวนของความคลาดเคลื่อนเพิ่มขึ้น α 
ควรมคีาปานกลาง ถาการแจกแจงของตวัแปรอสิระเปลีย่นเปนการแจกแจงเอกรปู และความแปรปรวนของความคลาดเคลือ่นมี

คานอยถึงปานกลาง α ควรมีคาปานกลาง นอกเหนือจากนี้ α ควรมีคานอย ถาความแปรปรวนของความคลาดเคลื่อนเพิ่มขึ้น 

จะสงผลตอความถูกตองของ APIC ลดลง แตเมื่อขนาดตัวอยางเพิ่มขึ้น ความถูกตองของ APIC จะเพิ่มขึ้น

คําสําคัญ: Kullback’s Directed Divergence Kullback’s Symmetric Divergence การคัดเลือกตัวแบบ ตัวแบบถดถอย 

Abstract
This article proposed a model selection criterion in order to correct the weak signal-to-noise ratio and to reduce the 

probability of over/underfitting for regression model by adjusting the penalty term of the well-known model selection 

criteria (AIC, BIC, KIC), called adjusted penalty information criterion (APIC). Criterion is classified to be the best when 

it has the strong signal-to-noise ratio, lowest probability of over/underfitting and maximum probability of correct order 

being selected. The theoretical results show that, if the value of α tends to infinity, the probability of overfitting tends 

to zero and the signal-to-noise ratio tends to strong, but the probability of underfitting tends to one. The simulation 

results show that, when the true model is difficult to identify, distributions of independent variables are normal or 

uniform, the appropriate α is small. But for the independent variables are normal distributed, sample size increases 

and variances of error terms are small to moderate, α should be moderate. If the true model is easily to identify, 
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distribution of independent variables is normal and variances of error terms are small to moderate, the appropriate α 

is large. When the variance of error terms increases, α should be moderate. If the distribution of independent variables 

changes to be uniform and variances of error terms are small to moderate, α should be moderate, otherwise α should 

be small. If the variance of error terms increases, the validity of APIC decreases, but when the sample size increases, 

the validity of APIC also increases.

Keywords: Kullback’s directed divergence, Kullback’s symmetric divergence, model selection, regression model

Introduction 
In the application of statistics, the statistical modeling is 

considered as a major task of study. Three statistical 

processes to guide a model, which has the parsimony, 

goodness-of-fit and generalizability properties, are the 

hypothesis testing of parameters, variable selection  

algorithms and model selection criterion. The model  

selection criterion is a popular tool for selecting the best 

model. The first model selection criterion to gain  

widespread acceptance was Akaike information criterion, 

AIC1-3. This serves as an asymptotically unbiased  

estimator of a variant of Kullback’s directed divergence 

between the true model and a fitted approximating 

model. Other well-known criteria were subsequently  

introduced and studied such as, Bayesian information 

criterion, BIC4 and Kullback information criterion, KIC5-6. 

BIC is an asymptotic approximation to a transformation 

of Bayesian posterior probability of a candidate model7. 

KIC is a symmetric measure, meaning that an alternate 

directed divergence may be obtained by reversing the 

roles of the two models in the definition of the measure5,8. 

Although AIC remains arguably the most widely used 

model selection criterion, BIC and KIC are popular  

competitors. In fact, BIC is often preferred over AIC by 

practitioners who find appeal in either its Bayesian  

justification or its tendency to choose more parsimonious 

models than AIC7. Likewise, KIC is a symmetric measure 

which combines the information in two related, though 

distinct measures; its functions as a gauge of model 

disparity that is arguably more sensitive than AIC that 

corresponds to only individual component5,8. However, 

AIC, BIC and KIC still have the problems of weak  

signal-to-noise ratios and high probabilities of overfitting 

when the sample size is not large enough which both 

problems have an effect on the frequency of selection the 

correct model. With this motivation, the aim of this paper 

is to propose a model selection criterion to correct the 

weak signal-to-noise ratio and to reduce the probability 

of over/underfitting by adjusting the penalty term of the 

model selection criterion, called adjusted penalty information 

criterion, denoted by APIC. The proposed criterion  

performance is examined by the extensive simulation 

study relative to the well-known criteria, AIC, BIC and 

KIC, under the difference circumstances: sample sizes, 

orders of true model, regression coefficients, variances 

of error terms and distributions of independent variables9-12. 

The criterion is classified to be the best when it has the 

strong signal-to-noise ratio, has the lowest probability of 

over/underfitting and has the maximum probability of  

correct order being selected. The remainder of this paper 

is organized as follows. Adjusted Penalty Information 

Criterion (APIC) in order to correct the weak signal- 

to-noise ratio and to reduce the probability of over/under-

fitting is proposed in Section 2. In Section 3, we simulate 

1,000 realizations of multiple regression models in order 

to examine the performance of APIC relative to AIC, BIC 

and KIC. Finally, Section 4 is the conclusions, discussion 

and further study. 

Materials and Methods
The true regression model to consider in this paper is in 

the form13

  (1)

and the candidate or approximating regression model is 

in the form

   (2)
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 where  is an  dependent random vector of 

observations,  and  are  and  matrices of 

independent variables with full-column rank, respectively, 

 and  are  and  parameter vectors of regression 

coefficients, respectively,  and  are  error vectors 

with zero means and variance  and  respec-

tively. The maximum likelihood estimators of  and  

are, respectively,   and 

For each data set, we can construct many fitted candidate 

models. Nevertheless, we cannot know which model is 

the best. Criterion for model selection is a way to solve 

this problem. AIC, BIC and KIC are three well-known 

criteria to consider in this paper. Many authors usually 

scale these criteria by 1/n in order to express them as a 

rate per observation. The formulae for them are based 

on the following form,

  (3)

 When the values of  in (3) are equal to 2,  

and 3, APIC becomes AIC1-2, BIC4 and KIC5, respec-

tively. In this paper, the methods used to compare which 

criterion is the best are the ratio of signal-to-noise, the 

probability of over/underfitting and the probability of correct 

order being selected. McQuarrie and Tsai14 defined the 

signal-to-noise ratio as a measurement that is basically 

a ratio of the expectation to the standard deviation of the 

difference in criterion values for two models. The ratio 

tends to assess whether the penalty term is sufficiently 

strong in relation to the goodness of fit term. From 

the true model order  and a candidate model order 

where , the true model is considered better than a 

candidate model if  Then the signal-to-

noise ratio that the true model is selected compared to a 

candidate model is 

 

  (4)

 In order to find the signal in (4), we apply the 

second-order of Taylor’s series expansions as follows. 

Suppose  expanding  about  we 

have 

 

and   (5)

Under the assumption of nested models;  and 

we have 

  and  

is independent of  (6)

 where  represents the chi-square distribution 

with  degrees of freedom.  

 Using the result of Taylor’s series expansions in 

(5) and the assumptions in (6), we have

  (7)

 From (7), the signal in (4) is approximated by

  (8)

 In order to find the noise in (4), we use the  

assumptions in (6), then we have

 

 , (9)

 the Q-statistic in (9) has the Beta distribution

 

 and the log-distribution is 

  (10)

 Applying the first-order of Taylor’s series expan-

sions to log(Q) in (10) about 
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 we have

 Hence

 (11)

 Combined the results in (8) and (11) to be the 

approximate signal-to-noise ratio in (4) as follows:

 

 (12)

  In (12), the signal-to-noise ratio of APIC depends 

on the value of α as mention earlier. When we replace 

the values of α by 2,  and 3, we have the signal-

to-noise ratios of AIC, BIC and KIC, respectively. If the 

value of α tends to infinity under the same values of the 

sample size  the order of true model  and the 

additional variable  APIC has a strong signal-to-noise 

ratio. The proof of the signal-to-noise ratio can be  

confirmed numerically in Table 1. The example of the 

calculation for the signal-to-noise ratio of APIC, for , 

 and , is as follows:

 From Table 1 we found that when the sample 

size is small (n = 15), KIC has a strong signal-to-noise 

ratio than BIC and AIC, respectively, because the value 

of α in (3) from KIC is larger than BIC and AIC, respec-

tively (3 > log(15) > 2). Whereas the sample size are 

moderate to large (n = 30, 100), BIC has a strong signal-

to-noise ratio than KIC and AIC, respectively, because 

the value of α in (3) from BIC is larger than KIC and AIC, 

respectively (log(30) or log(100) > 3 > 2). Therefore, we 

can conclude that, APIC with a much more value of α, 

make its signal-to-noise to be strong.

 The probability of over/underfitting is the second 

method to compare which criterion is the best. Both 

overfitting and underfitting can lead to problems with the 

predictive abilities of a model. An underfitted model may 

have poor predictive ability due to a lack of detail in the 

model, while an overfitted model may be unstable in the 

sense that repeated samples from the same process can 

lead to widely differing predictions due to variability in the 

extraneous variables. The probability of overfitting is 

defined based on a model that has extra variables with 

more parameters than the optimal model15. The probabil-

ity of APIC preferring the overfitted model by  extra 

variables is analyzed here by comparing the true model 

of order  to a more complex model or overfitted model 

of order   Hence for finite n, the probability that 

APIC prefers the overfitted model is defined by

 (13)

 Using the assumptions in (6), the probability of 

overfitting by   extra variables for APIC in (13) becomes

 (14)

 In the opposite, the probability of underfitting is 

defined based on a model with too few variables com-

pared to the optimal model15. It is defined by
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Table 1 Signal-to-noise ratio of APIC α for different values of ,  and .

n p
0

l
Criteria

APIC1 APIC2 (AIC) APIClog(n) (BIC) APIC3 (KIC) APIC4 APIC5 APIC6 APIC7

15 3 1 -0.2450 0.3400 0.7542 0.9250 1.5100 2.0950 2.6800 3.2650

15 3 2 -0.3884 0.4004 0.9589 1.1892 1.9780 2.7668 3.5556 4.3444

15 3 3 -0.5291 0.3874 1.0364 1.3039 2.2204 3.1370 4.0535 4.9700

15 3 4 -0.6752 0.3225 1.0290 1.3203 2.3181 3.3159 4.3136 5.3114

15 5 1 -0.3660 0.1239 0.4708 0.6138 1.1037 1.5936 2.0835 2.5734

15 5 2 -0.5625 0.0907 0.5532 0.7439 1.3971 2.0503 2.7035 3.3567

n p
0

l APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

15 3 1 3.8500 4.4350 5.0200 5.6050 6.1900 6.7750 7.3600

15 3 2 5.1333 5.9221 6.7109 7.4997 8.2885 9.0773 9.8661

15 3 3 5.8865 6.8030 7.7195 8.6360 9.5526 10.4691 11.3856

15 3 4 6.3092 7.3070 8.3047 9.3025 10.3003 11.2981 12.2958

15 5 1 3.0633 3.5532 4.0431 4.5330 5.0229 5.5128 6.0027

15 5 2 4.0099 4.6631 5.3163 5.9695 6.6227 7.2759 7.9291

n p
0

l APIC1 APIC2 (AIC) APIC3 (KIC) APIClog(n) (BIC) APIC4 APIC5 APIC6 APIC7

30 3 1 -0.1132 0.5340 1.1812 1.4409 1.8284 2.4756 3.1229 3.7701

30 3 2 -0.1785 0.7190 1.6166 1.9767 2.5141 3.4116 4.3092 5.2067

30 3 3 -0.2414 0.8356 1.9127 2.3448 2.9897 4.0667 5.1438 6.2208

30 3 4 -0.3054 0.9120 2.1295 2.6179 3.3470 4.5644 5.7819 6.9994

30 5 1 -0.1648 0.4352 1.0352 1.2759 1.6352 2.2352 2.8352 3.4352

30 5 2 -0.2516 0.5791 1.4097 1.7430 2.2404 3.0710 3.9017 4.7324

n p
0

l APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

30 3 1 4.4173 5.0645 5.7117 6.3589 7.0062 7.6534 8.3006

30 3 2 6.1042 7.0017 7.8993 8.7968 9.6943 10.5918 11.4894

30 3 3 7.2978 8.3749 9.4519 10.5289 11.6060 12.6830 13.7600

30 3 4 8.2168 9.4343 10.6518 11.8692 13.0867 14.3041 15.5216

30 5 1 4.0352 4.6352 5.2352 5.8352 6.4352 7.0352 7.6352

30 5 2 5.5630 6.3937 7.2244 8.0550 8.8857 9.7163 10.5470

n p
0

l APIC1 APIC2 (AIC) APIC3 (KIC) APIC4 APIClog(n) (BIC) APIC5 APIC6 APIC7

100 3 1 -0.0324 0.6569 1.3463 2.0356 2.4528 2.7250 3.4143 4.1037

100 3 2 -0.0510 0.9188 1.8886 2.8584 3.4453 3.8282 4.7980 5.7678

100 3 3 -0.0687 1.1128 2.2942 3.4757 4.1907 4.6572 5.8387 7.0202

100 3 4 -0.0867 1.2703 2.6273 3.9843 4.8055 5.3413 6.6982 8.0552

100 5 1 -0.0469 0.6283 1.3035 1.9787 2.3874 2.6539 3.3292 4.0044

100 5 2 -0.0714 0.8784 1.8282 2.7780 3.3527 3.7277 4.6775 5.6273

n p
0

l APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

100 3 1 4.7930 5.4824 6.1717 6.8611 7.5504 8.2398 8.9291

100 3 2 6.7376 7.7074 8.6772 9.6470 10.6168 11.5866 12.5564

100 3 3 8.2016 9.3831 10.5646 11.7461 12.9276 14.1091 15.2905

100 3 4 9.4122 10.7692 12.1262 13.4831 14.8401 16.1971 17.5541

100 5 1 4.6796 5.3548 6.0300 6.7052 7.3804 8.0556 8.7308

100 5 2 6.5771 7.5269 8.4767 9.4265 10.3763 11.3261 12.2758
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 (15)

 In (14) and (15), APIC’s probability of over/ 

underfitting depends on the value of  α same as the 

signal-to-noise ratio. When we replace the values of α 

by 2,  and 3, we have the probabilities of over/ 

underfitting of ,  and , respectively. If the value 

of α tends to infinity under the same values of n,  and 

, APIC having the low probability of overfitting but it will 

be prone to underfitting. The proof of the probability of 

over/underfitting can be confirmed numerically in Table 2 

and 3. The example of the calculation for the probability 

of overfitting by  extra variables of APIC, for , , 

 and , is as follows:

 It means that APIC for  would select the 

model whose order is higher by one order than true 

model with a probability of 0.4025. In the same manner, 

the probability of underfitting by  variables of APIC for 

this case is 

 It means that APIC for  would select the 

model whose order is lower by one order than true 

model with a probability of 0.6190. The model selection 

criterion that has strong signal-to-noise ratio and lowest 

probability of over/underfitting is preferable. As a result, 

the main objective of this paper is to find the appropriate 

value of , by proving and verifying the result of study 

with simulation data, in order to make the strength of 

penalty function in the model selection criterion. Then, 

the performance of APIC is examined relative to the  

well-known criteria, AIC, BIC and KIC, under various 

circumstances.

 From Table 2 and 3 we found that when the 

sample size is small (n = 15), KIC has probability of 

overfitted less than BIC and AIC, respectively, in the  

opposite it has more probability of underfitted because 

the value of  in (3) from KIC is larger than BIC and AIC, 

respectively (3 > log(15) > 2). Whereas the sample size 

are moderate to large (n = 30, 100), BIC has probability 

of overfitted less than KIC and AIC, respectively, in the 

opposite it has more probability of underfitted because 

the value of α in (3) from BIC is larger than KIC and AIC, 

respectively (log(30) or log(100) > 3 > 2). Therefore, the 

conclusion is that, APIC with a much more value of α, 

make its probability of overfitting to be smaller but make 

more probability of underfitting.
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Table 2 Probability of overfitting by  extra variables of APIC  for different values of ,  and  .

n p
0

l
Criteria

APIC1 APIC2 (AIC) APIClog(n) (BIC) APIC3 (KIC) APIC4 APIC5 APIC6 APIC7

15 3 1 0.4025 0.2363 0.1682 0.1469 0.0939 0.0611 0.0402 0.0266

15 3 2 0.5134 0.2636 0.1644 0.1353 0.0695 0.0357 0.0183 0.0094

15 3 3 0.5947 0.2857 0.1631 0.1287 0.0561 0.0240 0.0101 0.0042

15 3 4 0.6664 0.3143 0.1701 0.1305 0.0508 0.0190 0.0070 0.0025

15 5 1 0.4511 0.2865 0.2148 0.1917 0.1316 0.0918 0.0647 0.0460

15 5 2 0.5866 0.3442 0.2359 0.2019 0.1184 0.0695 0.0408 0.0239

n p
0

l APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

15 3 1 0.0178 0.0119 0.0080 0.0054 0.0037 0.0025 0.0017

15 3 2 0.0048 0.0025 0.0013 0.0007 0.0003 0.0002 0.0001

15 3 3 0.0018 0.0007 0.0003 0.0001 0.0001 0.0000 0.0000

15 3 4 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000

15 5 1 0.0329 0.0236 0.0170 0.0123 0.0089 0.0065 0.0047

15 5 2 0.0140 0.0082 0.0048 0.0028 0.0017 0.0010 0.0006

n p
0

l APIC1 APIC2 (AIC) APIC3 (KIC) APIClog(n) (BIC) APIC4 APIC5 APIC6 APIC7

30 3 1 0.3565 0.1922 0.1102 0.0890 0.0651 0.0392 0.0239 0.0147

30 3 2 0.4346 0.1889 0.0821 0.0588 0.0357 0.0155 0.0067 0.0029

30 3 3 0.4846 0.1795 0.0617 0.0397 0.0204 0.0066 0.0021 0.0007

30 3 4 0.5256 0.1720 0.0482 0.0282 0.0125 0.0031 0.0007 0.0002

30 5 1 0.3761 0.2106 0.1252 0.1026 0.0766 0.0478 0.0301 0.0192

30 5 2 0.4646 0.2158 0.1003 0.0737 0.0466 0.0216 0.0101 0.0047

n p
0

l APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

30 3 1 0.0091 0.0057 0.0035 0.0022 0.0014 0.0009 0.0006

30 3 2 0.0013 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000

30 3 3 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

30 3 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 5 1 0.0123 0.0079 0.0051 0.0033 0.0022 0.0014 0.0009

30 5 2 0.0022 0.0010 0.0005 0.0002 0.0001 0.0000 0.0000

n p
0

l APIC1 APIC2 (AIC) APIC3 (KIC) APIC4 APIClog(n) (BIC) APIC5 APIC6 APIC7

100 3 1 0.3284 0.1670 0.0905 0.0506 0.0360 0.0289 0.0167 0.0097

100 3 2 0.3867 0.1496 0.0578 0.0224 0.0126 0.0087 0.0033 0.0013

100 3 3 0.4178 0.1288 0.0367 0.0100 0.0045 0.0027 0.0007 0.0002

100 3 4 0.4395 0.1109 0.0236 0.0046 0.0017 0.0009 0.0002 0.0000

100 5 1 0.3336 0.1715 0.0940 0.0531 0.0380 0.0306 0.0179 0.0105

100 5 2 0.3946 0.1557 0.0614 0.0242 0.0138 0.0096 0.0038 0.0015

n p
0

l APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

100 3 1 0.0057 0.0034 0.0020 0.0012 0.0007 0.0004 0.0003

100 3 2 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000

100 3 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

100 3 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

100 5 1 0.0062 0.0037 0.0022 0.0013 0.0008 0.0005 0.0003

100 5 2 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000



Warangkhana Riansut J Sci Technol MSU692

Table 3 Probability of underfitting by  variables of APIC  for different values of ,   and .

n p
0

l
Criteria

APIC1 APIC2 (AIC) APIClog(n) (BIC) APIC3 (KIC) APIC4 APIC5 APIC6 APIC7

15 3 1 0.6190 0.7847 0.8507 0.8709 0.9204 0.9500 0.9682 0.9796

15 3 2 0.5507 0.7981 0.8854 0.9093 0.9592 0.9817 0.9918 0.9963

15 3 3 0.5238 0.8272 0.9197 0.9418 0.9811 0.9940 0.9981 0.9994

15 3 4 0.5146 0.8581 0.9464 0.9646 0.9918 0.9982 0.9996 0.9999

15 5 1 0.5743 0.7401 0.8102 0.8324 0.8890 0.9253 0.9491 0.9651

15 5 2 0.4866 0.7364 0.8356 0.8647 0.9305 0.9643 0.9817 0.9906

n p
0

l APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

15 3 1 0.9869 0.9915 0.9945 0.9964 0.9976 0.9984 0.9990

15 3 2 0.9983 0.9993 0.9997 0.9998 0.9999 1.0000 1.0000

15 3 3 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

15 3 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 5 1 0.9759 0.9833 0.9883 0.9918 0.9943 0.9960 0.9972

15 5 2 0.9952 0.9975 0.9987 0.9993 0.9997 0.9998 0.9999

n p
0

l APIC1 APIC2 (AIC) APIC3 (KIC) APIClog(n) (BIC) APIC4 APIC5 APIC6 APIC7

30 3 1 0.6528 0.8163 0.8965 0.9170 0.9399 0.9645 0.9787 0.9871

30 3 2 0.5934 0.8347 0.9328 0.9532 0.9727 0.9889 0.9955 0.9982

30 3 3 0.5680 0.8612 0.9588 0.9750 0.9882 0.9967 0.9991 0.9998

30 3 4 0.5561 0.8863 0.9754 0.9870 0.9951 0.9991 0.9998 1.0000

30 5 1 0.6339 0.7988 0.8825 0.9045 0.9294 0.9567 0.9732 0.9832

30 5 2 0.5654 0.8111 0.9179 0.9412 0.9643 0.9845 0.9933 0.9971

n p
0

l APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

30 3 1 0.9922 0.9952 0.9971 0.9982 0.9989 0.9993 0.9996

30 3 2 0.9993 0.9997 0.9999 0.9999 1.0000 1.0000 1.0000

30 3 3 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

30 3 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

30 5 1 0.9894 0.9933 0.9957 0.9973 0.9983 0.9989 0.9993

30 5 2 0.9987 0.9994 0.9998 0.9999 1.0000 1.0000 1.0000

n p
0

l APIC1 APIC2 (AIC) APIC3 (KIC) APIC4 APIClog(n) (BIC) APIC5 APIC6 APIC7

100 3 1 0.6741 0.8352 0.9111 0.9506 0.9650 0.9720 0.9839 0.9907

100 3 2 0.6209 0.8563 0.9455 0.9793 0.9885 0.9922 0.9970 0.9989

100 3 3 0.5967 0.8808 0.9676 0.9915 0.9963 0.9978 0.9995 0.9999

100 3 4 0.5830 0.9023 0.9808 0.9965 0.9988 0.9994 0.9999 1.0000

100 5 1 0.6690 0.8308 0.9078 0.9481 0.9630 0.9703 0.9827 0.9899

100 5 2 0.6133 0.8504 0.9422 0.9776 0.9874 0.9913 0.9967 0.9987

n p
0

l APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

100 3 1 0.9945 0.9968 0.9981 0.9989 0.9993 0.9996 0.9998

100 3 2 0.9996 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000

100 3 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 3 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 1 0.9940 0.9965 0.9979 0.9987 0.9992 0.9995 0.9997

100 5 2 0.9995 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000
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Simulation Study and Results
 In addition to the proofs of signal-to-noise ratio 

in (12) and the probability of over/underfitting in (14) and 

(15), we use the simulation data to find the appropriate 

value of  for APIC in (3). True multiple regression mod-

els in (1) are constructed as follows. 

 Model 1 (very weakly identifiable true model due 

to the small values of regression coefficients): 

  the true 

order 

 Model 2 (weakly identifiable true model due to 

the small values of regression coefficients): 

  the true order 

 Model 3 (strongly identifiable true model due to 

the large values of regression coefficients):

  the true order 

 Model 4 (very strongly identifiable true model 

due to the large values of regression coefficients):

  the true order 

 For each model, we consider 1,000 realizations 

for three levels of the sample sizes which are n = 15 

(small), n = 30 (moderate) and n = 100 (large). The error 

terms for all models are assumed to be  where 

 in (1) is assumed equal to three levels: 0.25, 1, 9. 

Seven candidate variables,  to , are stored in an  

matrix  of the candidate model in (2).  is given as a 

constant which equals 1, followed by six independent 

variables which have two distributions:  and  

For the uniform distribution, we given 

 Candidate models include the columns of  in 

a sequentially nested fashion; i.e., columns 1 to  define 

the design matrix for the candidate model with dimension 

. Over 1,000 realizations, we apply APIC in (3) with the 

values of  ranging from 1 to 14 on the datasets y of four 

models constructed. The probability of order selected by 

APIC is measure and used for examining the effects of 

weak or strong penalty function in the proposed criterion. 

Findings are the following.

 For the very weakly identifiable situation of true 

models with the true orders  = 5, Model 1, the sample 

size is small (n = 15) and the distribution of independent 

variable is normal, the appropriate values of  when the 

true variances  = 0.25, 1, 9, are 2, 1 and 1, respectively  

with the probabilities of correct order being selected are 

29.7%, 15.5% and 11.9%. While, the distribution of  

independent variable is changed to be uniform, the  

appropriate values of   for all three levels of true  

variances are 1 with the probabilities are reduced to be 

13.2%, 11.3% and 10.6%.

 For the weakly identifiable situation of true  

models with the true orders  = 3, Model 2, the sample 

size is small (n = 15) and the distribution of independent 

variable is normal, the appropriate values of  when the 

true variances  = 0.25, 1, 9, are 4, log n and 2, respec-

tively with the probabilities of correct order being selected 

are 65.8%, 33.3% and 11.9%. While, the distribution of 

independent variable is changed to be uniform, the ap-

propriate values of  for all three levels of true variances 

are 2 with the probabilities are reduced to be 17.8%, 

12.6% and 13.6%.

 For the strongly identifiable situation of true 

models with the true orders = 3, Model 3, the sample 

size is small (n = 15) and the distribution of independent 

variable is normal, the appropriate values of   when the 

true variances  = 0.25, 1, 9, are 14, 9 and 4, respec-

tively with the probabilities of correct order being selected 

are 99.8%, 97.7% and 55.4%. While, the distribution of 

independent variable is changed to be uniform, the ap-

propriate values of  for three levels of true variances are 

6, 4 and log n with the probabilities are reduced to be 

85.8%, 48.5% and 15.7%.

 For the very strongly identifiable situation of true 

models with the true orders = 5, Model 4, the sample 

size is small (n = 15) and the distribution of independent 

variable is normal, the appropriate values of  when the 

true variances  = 0.25, 1, 9, are 13, 7 and log n,  

respectively with the probabilities of correct order being 

selected are 98.5%, 91.6% and 46.6%. While, the distri-

bution of independent variable is changed to be uniform, 
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the appropriate values of  for three levels of true vari-

ances are 5, log n and 1 with the probabilities are reduced 

to be 78.2%, 42.3% and 14.8%.

 For very weakly identifiable situation of true 

models with the true orders   = 5, Model 1, the sample 

size is moderate (n = 30) and the distribution of independ-

ent variable is normal, the appropriate values of   when 

the true variances   = 0.25, 1, 9, are 3, 1 and 1, re-

spectively with the probabilities of correct order being 

selected are 55%, 24.6% and 13.5%. While, the distribu-

tion of independent variable is changed to be uniform, 

the appropriate values of  for all three levels of true 

variances are 1 with the probabilities are reduced to be 

17.5%, 13% and 13.3%.

 For the weakly identifiable situation of true mod-

els with the true orders  = 3, Model 2, the sample size 

is moderate (n = 30) and the distribution of independent 

variable is normal, the appropriate values of  when the 

true variances   = 0.25, 1, 9, are 5, 3 and 2, respec-

tively with the probabilities of correct order being selected 

are 90.8%, 55.5% and 18.5%. While, the distribution of 

independent variable is changed to be uniform, the ap-

propriate values of  for all three levels of true variances 

are 2 with the probabilities are reduced to be 29.2%, 

16.6% and 11.8%.

 For strongly identifiable situation of true models 

with the true orders  = 3, Model 3, the sample size is 

moderate (n = 30) and the distribution of independent 

variable is normal, the appropriate values of  when the 

true variances  = 0.25, 1, 9, are 14, 11 and 5, respec-

tively with the probabilities of correct order being selected 

are 100%, 99.9% and 85.5%. While, the distribution of 

independent variable is changed to be uniform, the ap-

propriate values of  for three levels of true variances are 

10, 4 and 2 with the probabilities are reduced to be 98.8%, 

75.9% and 23.2%.

 For very strongly identifiable situation of true 

models with the true orders = 5, Model 4, the sample 

size is moderate (n = 30) and the distribution of independ-

ent variable is normal, the appropriate values of  when 

the true variances  = 0.25, 1, 9, are 14, 14 and 4, re-

spectively with the probabilities of correct order being 

selected are 100%, 100% and 79.7%. While, the distribu-

tion of independent variable is changed to be uniform, 

the appropriate values of  for three levels of true vari-

ances are 8, 3 and 1 with the probabilities are reduced 

to be 98.6%, 72.3% and 22.3%.

 For very weakly identifiable situation of true 

models with the true orders  = 5, Model 1, the sample 

size is large (n = 100) and the distribution of independent 

variable is normal, the appropriate values of  when the 

true variances  = 0.25, 1, 9, are 5, 2 and 1, respec-

tively with the probabilities of correct order being selected 

are 91.4%, 53.5% and 17.4%. While, the distribution of 

independent variable is changed to be uniform, the ap-

propriate values of  for all three levels of true variances 

are 1 with the probabilities are reduced to be 31.3%, 18% 

and 11.7%.

 For weakly identifiable situation of true models 

with the true orders = 3, Model 2, the sample size is 

large (n = 100) and the distribution of independent vari-

able is normal, the appropriate values of   when the true 

variances  = 0.25, 1, 9, are 12, 5 and 2, respectively 

with the probabilities of correct order being selected are 

100%, 92.9% and 33.9%. While, the distribution of inde-

pendent variable is changed to be uniform, the appropri-

ate values of   for three levels of true variances are 3, 

2 and 1 with the probabilities are reduced to be 63.5%, 

28.7% and 12.5%.

 For strongly identifiable situation of true models 

with the true orders = 3, Model 3, the sample size is 

large (n = 100) and the distribution of independent vari-

able is normal, the appropriate values of  when the true 

variances  = 0.25, 1, 9, are 12, 13 and 9, respectively 

with the probabilities of correct order being selected are 

100%, 100% and 99.3%. While, the distribution of inde-

pendent variable is changed to be uniform, the appropri-

ate values of  for three levels of true variances are 14, 

8 and 2 with the probabilities are reduced to be 100%, 

99.3% and 50.6%.

 For very strongly identifiable situation of true 

models with the true orders = 5, Model 4, the sample 

size is large (n = 100) and the distribution of independent 

variable is normal, the appropriate values of  when the 
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true variances  = 0.25, 1, 9, are 14, 10 and 10, respec-

tively with the probabilities of correct order being selected 

are 99.9%, 99.9% and 99.5%. While, the distribution of 

independent variable is changed to be uniform, the ap-

propriate values of  for three levels of true variances are 

13, 9 and 2 with the probabilities are reduced to be 100%, 

99.3% and 49.2%.

 From the results in 1. to 12. the conclusion is 

that, the weakly or very weakly identifiable situations of 

true models, Model 1 and Model 2, the true orders = 

3, 5 and the distribution of independent variable is normal, 

the appropriate   is small. If sample size increases and 

variances of error terms are small (   = 0.25) to moder-

ate (  = 1),  should be moderate. For the distribution 

of independent variable is changed to be uniform, the 

appropriate   is small, regardless the sample size or the 

variances of error terms. When the true model is very 

weakly identifiable, the appropriate   should be smaller 

than the weakly identifiable situation. The strongly or very 

strongly identifiable situations of true models, Model 3 

and Model 4, the true orders = 3, 5 and the distribution 

of independent variable is normal, the appropriate   is 

large. If the variance of error terms increases,  should 

be moderate. For the distribution of independent variable 

is changed to be uniform, the appropriate   is moderate. 

If the variance of error terms increases,  should be small. 

Conclusions, Discussion and Future Works
 In this paper, we propose the model selection 

criterion, called Adjusted Penalty Information Criterion,

 

 when the values of   are equal to 2,  and 

3; APIC becomes AIC, BIC and KIC respectively. Each 

criterion has a different value due to its penalty function, 

the differences in strong or weak penalty affecting the 

probability of over/underfitting, including the problem of 

signal-to-noise ratio being weak. The theoretical results 

show that, when the value of  tends to infinity, the  

probability of overfitting tends to zero and the signal- 

to-noise ratio tends to strong. However, the probability of 

underfitting tends to one. At the same time, the results of 

simulation suggest that, the appropriate  is small when 

true models are weakly or very weakly identifiable and 

distributions of independent variables are normal or  

uniform. But  should be moderate, if distribution of  

independent variables is normal, sample size increases 

and variances of error terms are small to moderate. The 

appropriate  is large, if the true model is strongly  

identifiable, distribution of independent variables is normal, 

and variance of error terms is small to moderate. But  

should be moderate, if the variance of error terms 

increases. When the distribution of independent variables 

changes to be uniform, the appropriate   is moderate 

for the case of variance of error terms is small to moder-

ate. But   should be small, if the variance of error terms 

increases. All of these conclusions can be summarized 

in Table 4. The variance of error terms and sample size 

affects the validity of APIC. The variance of error terms 

increases, the validity of APIC decreases. Whereas the 

sample size increases, the validity of APIC also increases. 

In further work, we attempt to construct the model selection 

criteria to correct the weak signal-to-noise ratio and to 

reduce the probability of over/underfitting in the multi-

variate regression and simultaneous equations models.

Table 4 Appropriate value of  in APIC.

Model n

X Normal X Uniform

= 

0.25
= 1 = 9

 = 

0.25
= 1  = 9

Model 1, 2 

Weakly

15 small

small30
moderate small

100

Model 3, 4 

Strongly

15

large moderate moderate small30

100
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